@@ -260,26 +260,23 @@ class LinearSVR(LinearModel, RegressorMixin):
260260
261261 Parameters
262262 ----------
263- C : float, optional (default=1.0)
264- Penalty parameter C of the error term. The penalty is a squared
265- l2 penalty. The bigger this parameter, the less regularization is used.
266-
267- loss : string, 'epsilon_insensitive' or 'squared_epsilon_insensitive' (default='epsilon_insensitive')
268- Specifies the loss function. 'l1' is the epsilon-insensitive loss
269- (standard SVR) while 'l2' is the squared epsilon-insensitive loss.
270-
271263 epsilon : float, optional (default=0.1)
272264 Epsilon parameter in the epsilon-insensitive loss function. Note
273265 that the value of this parameter depends on the scale of the target
274266 variable y. If unsure, set ``epsilon=0``.
275267
276- dual : bool, (default=True)
277- Select the algorithm to either solve the dual or primal
278- optimization problem. Prefer dual=False when n_samples > n_features.
279-
280268 tol : float, optional (default=1e-4)
281269 Tolerance for stopping criteria.
282270
271+ C : float, optional (default=1.0)
272+ Penalty parameter C of the error term. The penalty is a squared
273+ l2 penalty. The bigger this parameter, the less regularization is used.
274+
275+ loss : string, optional (default='epsilon_insensitive')
276+ Specifies the loss function. The epsilon-insensitive loss
277+ (standard SVR) is the L1 loss, while the squared epsilon-insensitive
278+ loss ('squared_epsilon_insensitive') is the L2 loss.
279+
283280 fit_intercept : boolean, optional (default=True)
284281 Whether to calculate the intercept for this model. If set
285282 to false, no intercept will be used in calculations
@@ -296,6 +293,10 @@ class LinearSVR(LinearModel, RegressorMixin):
296293 To lessen the effect of regularization on synthetic feature weight
297294 (and therefore on the intercept) intercept_scaling has to be increased.
298295
296+ dual : bool, (default=True)
297+ Select the algorithm to either solve the dual or primal
298+ optimization problem. Prefer dual=False when n_samples > n_features.
299+
299300 verbose : int, (default=0)
300301 Enable verbose output. Note that this setting takes advantage of a
301302 per-process runtime setting in liblinear that, if enabled, may not work
@@ -473,13 +474,13 @@ class SVC(BaseSVC):
473474 Independent term in kernel function.
474475 It is only significant in 'poly' and 'sigmoid'.
475476
477+ shrinking : boolean, optional (default=True)
478+ Whether to use the shrinking heuristic.
479+
476480 probability : boolean, optional (default=False)
477481 Whether to enable probability estimates. This must be enabled prior
478482 to calling `fit`, and will slow down that method.
479483
480- shrinking : boolean, optional (default=True)
481- Whether to use the shrinking heuristic.
482-
483484 tol : float, optional (default=1e-3)
484485 Tolerance for stopping criterion.
485486
@@ -639,13 +640,13 @@ class NuSVC(BaseSVC):
639640 Independent term in kernel function.
640641 It is only significant in 'poly' and 'sigmoid'.
641642
643+ shrinking : boolean, optional (default=True)
644+ Whether to use the shrinking heuristic.
645+
642646 probability : boolean, optional (default=False)
643647 Whether to enable probability estimates. This must be enabled prior
644648 to calling `fit`, and will slow down that method.
645649
646- shrinking : boolean, optional (default=True)
647- Whether to use the shrinking heuristic.
648-
649650 tol : float, optional (default=1e-3)
650651 Tolerance for stopping criterion.
651652
@@ -769,15 +770,6 @@ class SVR(BaseLibSVM, RegressorMixin):
769770
770771 Parameters
771772 ----------
772- C : float, optional (default=1.0)
773- Penalty parameter C of the error term.
774-
775- epsilon : float, optional (default=0.1)
776- Epsilon in the epsilon-SVR model. It specifies the epsilon-tube
777- within which no penalty is associated in the training loss function
778- with points predicted within a distance epsilon from the actual
779- value.
780-
781773 kernel : string, optional (default='rbf')
782774 Specifies the kernel type to be used in the algorithm.
783775 It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or
@@ -803,12 +795,21 @@ class SVR(BaseLibSVM, RegressorMixin):
803795 Independent term in kernel function.
804796 It is only significant in 'poly' and 'sigmoid'.
805797
806- shrinking : boolean, optional (default=True)
807- Whether to use the shrinking heuristic.
808-
809798 tol : float, optional (default=1e-3)
810799 Tolerance for stopping criterion.
811800
801+ C : float, optional (default=1.0)
802+ Penalty parameter C of the error term.
803+
804+ epsilon : float, optional (default=0.1)
805+ Epsilon in the epsilon-SVR model. It specifies the epsilon-tube
806+ within which no penalty is associated in the training loss function
807+ with points predicted within a distance epsilon from the actual
808+ value.
809+
810+ shrinking : boolean, optional (default=True)
811+ Whether to use the shrinking heuristic.
812+
812813 cache_size : float, optional
813814 Specify the size of the kernel cache (in MB).
814815
@@ -894,14 +895,14 @@ class NuSVR(BaseLibSVM, RegressorMixin):
894895
895896 Parameters
896897 ----------
897- C : float, optional (default=1.0)
898- Penalty parameter C of the error term.
899-
900898 nu : float, optional
901899 An upper bound on the fraction of training errors and a lower bound of
902900 the fraction of support vectors. Should be in the interval (0, 1]. By
903901 default 0.5 will be taken.
904902
903+ C : float, optional (default=1.0)
904+ Penalty parameter C of the error term.
905+
905906 kernel : string, optional (default='rbf')
906907 Specifies the kernel type to be used in the algorithm.
907908 It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or
@@ -1020,12 +1021,6 @@ class OneClassSVM(BaseLibSVM, OutlierMixin):
10201021 If none is given, 'rbf' will be used. If a callable is given it is
10211022 used to precompute the kernel matrix.
10221023
1023- nu : float, optional
1024- An upper bound on the fraction of training
1025- errors and a lower bound of the fraction of support
1026- vectors. Should be in the interval (0, 1]. By default 0.5
1027- will be taken.
1028-
10291024 degree : int, optional (default=3)
10301025 Degree of the polynomial kernel function ('poly').
10311026 Ignored by all other kernels.
@@ -1047,6 +1042,12 @@ class OneClassSVM(BaseLibSVM, OutlierMixin):
10471042 tol : float, optional
10481043 Tolerance for stopping criterion.
10491044
1045+ nu : float, optional
1046+ An upper bound on the fraction of training
1047+ errors and a lower bound of the fraction of support
1048+ vectors. Should be in the interval (0, 1]. By default 0.5
1049+ will be taken.
1050+
10501051 shrinking : boolean, optional
10511052 Whether to use the shrinking heuristic.
10521053
0 commit comments