@@ -31,7 +31,7 @@ of squares between the observed responses in the dataset, and the
3131responses predicted by the linear approximation. Mathematically it
3232solves a problem of the form:
3333
34- .. math :: \underset{w}{min\,} {|| X w - y||_2}^2
34+ .. math :: \underset{w}{\ min\,} {|| X w - y||_2}^2
3535
3636.. figure :: ../auto_examples/linear_model/images/sphx_glr_plot_ols_001.png
3737 :target: ../auto_examples/linear_model/plot_ols.html
@@ -83,7 +83,7 @@ of squares,
8383
8484.. math ::
8585
86- \underset {w}{min\, } {{|| X w - y||_2 }^2 + \alpha {||w||_2 }^2 }
86+ \underset {w}{\ min\, } {{|| X w - y||_2 }^2 + \alpha {||w||_2 }^2 }
8787
8888
8989 Here, :math: `\alpha \geq 0 ` is a complexity parameter that controls the amount
@@ -170,7 +170,7 @@ weights (see
170170Mathematically, it consists of a linear model trained with :math: `\ell _1 ` prior
171171as regularizer. The objective function to minimize is:
172172
173- .. math :: \underset{w}{min\,} { \frac{1}{2n_{samples}} ||X w - y||_2 ^ 2 + \alpha ||w||_1}
173+ .. math :: \underset{w}{\ min\,} { \frac{1}{2n_{samples}} ||X w - y||_2 ^ 2 + \alpha ||w||_1}
174174
175175The lasso estimate thus solves the minimization of the
176176least-squares penalty with :math: `\alpha ||w||_1 ` added, where
@@ -319,7 +319,7 @@ Mathematically, it consists of a linear model trained with a mixed
319319:math: `\ell _1 ` :math: `\ell _2 ` prior as regularizer.
320320The objective function to minimize is:
321321
322- .. math :: \underset{w}{min\,} { \frac{1}{2n_{samples}} ||X W - Y||_{Fro} ^ 2 + \alpha ||W||_{21}}
322+ .. math :: \underset{w}{\ min\,} { \frac{1}{2n_{samples}} ||X W - Y||_{Fro} ^ 2 + \alpha ||W||_{21}}
323323
324324where :math: `Fro` indicates the Frobenius norm:
325325
@@ -355,7 +355,7 @@ The objective function to minimize is in this case
355355
356356.. math ::
357357
358- \underset {w}{min\, } { \frac {1 }{2 n_{samples}} ||X w - y||_2 ^ 2 + \alpha \rho ||w||_1 +
358+ \underset {w}{\ min\, } { \frac {1 }{2 n_{samples}} ||X w - y||_2 ^ 2 + \alpha \rho ||w||_1 +
359359 \frac {\alpha (1 -\rho )}{2 } ||w||_2 ^ 2 }
360360
361361
@@ -402,7 +402,7 @@ The objective function to minimize is:
402402
403403.. math ::
404404
405- \underset {W}{min\, } { \frac {1 }{2 n_{samples}} ||X W - Y||_{Fro}^2 + \alpha \rho ||W||_{2 1 } +
405+ \underset {W}{\ min\, } { \frac {1 }{2 n_{samples}} ||X W - Y||_{Fro}^2 + \alpha \rho ||W||_{2 1 } +
406406 \frac {\alpha (1 -\rho )}{2 } ||W||_{Fro}^2 }
407407
408408 The implementation in the class :class: `MultiTaskElasticNet ` uses coordinate descent as
@@ -734,12 +734,12 @@ regularization.
734734As an optimization problem, binary class L2 penalized logistic regression
735735minimizes the following cost function:
736736
737- .. math :: \underset{w, c}{min\,} \frac{1}{2}w^T w + C \sum_{i=1}^n \log(\exp(- y_i (X_i^T w + c)) + 1) .
737+ .. math :: \underset{w, c}{\ min\,} \frac{1}{2}w^T w + C \sum_{i=1}^n \log(\exp(- y_i (X_i^T w + c)) + 1) .
738738
739739Similarly, L1 regularized logistic regression solves the following
740740optimization problem
741741
742- .. math :: \underset{w, c}{min\,} \|w\|_1 + C \sum_{i=1}^n \log(\exp(- y_i (X_i^T w + c)) + 1).
742+ .. math :: \underset{w, c}{\ min\,} \|w\|_1 + C \sum_{i=1}^n \log(\exp(- y_i (X_i^T w + c)) + 1).
743743
744744Note that, in this notation, it's assumed that the observation :math: `y_i` takes values in the set
745745:math: `{-1 , 1 }` at trial :math: `i`.
@@ -1137,7 +1137,7 @@ The loss function that :class:`HuberRegressor` minimizes is given by
11371137
11381138.. math ::
11391139
1140- \underset {w, \sigma }{min\, } {\sum _{i=1 }^n\left (\sigma + H_m\left (\frac {X_{i}w - y_{i}}{\sigma }\right )\sigma \right ) + \alpha {||w||_2 }^2 }
1140+ \underset {w, \sigma }{\ min\, } {\sum _{i=1 }^n\left (\sigma + H_m\left (\frac {X_{i}w - y_{i}}{\sigma }\right )\sigma \right ) + \alpha {||w||_2 }^2 }
11411141
11421142 where
11431143
0 commit comments