Skip to content

Commit 1995994

Browse files
chenhe95agramfort
authored andcommitted
added random_state=0 to many instances (scikit-learn#7968)
1 parent 920e5b4 commit 1995994

File tree

1 file changed

+7
-6
lines changed

1 file changed

+7
-6
lines changed

sklearn/linear_model/tests/test_logistic.py

Lines changed: 7 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -278,7 +278,7 @@ def test_consistency_path():
278278

279279
def test_liblinear_dual_random_state():
280280
# random_state is relevant for liblinear solver only if dual=True
281-
X, y = make_classification(n_samples=20)
281+
X, y = make_classification(n_samples=20, random_state=0)
282282
lr1 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15)
283283
lr1.fit(X, y)
284284
lr2 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15)
@@ -295,7 +295,7 @@ def test_liblinear_dual_random_state():
295295

296296

297297
def test_logistic_loss_and_grad():
298-
X_ref, y = make_classification(n_samples=20)
298+
X_ref, y = make_classification(n_samples=20, random_state=0)
299299
n_features = X_ref.shape[1]
300300

301301
X_sp = X_ref.copy()
@@ -403,7 +403,8 @@ def test_multinomial_logistic_regression_string_inputs():
403403
# Test with string labels for LogisticRegression(CV)
404404
n_samples, n_features, n_classes = 50, 5, 3
405405
X_ref, y = make_classification(n_samples=n_samples, n_features=n_features,
406-
n_classes=n_classes, n_informative=3)
406+
n_classes=n_classes, n_informative=3,
407+
random_state=0)
407408
y_str = LabelEncoder().fit(['bar', 'baz', 'foo']).inverse_transform(y)
408409
# For numerical labels, let y values be taken from set (-1, 0, 1)
409410
y = np.array(y) - 1
@@ -745,7 +746,7 @@ def test_multinomial_logistic_regression_with_classweight_auto():
745746
def test_logistic_regression_convergence_warnings():
746747
# Test that warnings are raised if model does not converge
747748

748-
X, y = make_classification(n_samples=20, n_features=20)
749+
X, y = make_classification(n_samples=20, n_features=20, random_state=0)
749750
clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1)
750751
assert_warns(ConvergenceWarning, clf_lib.fit, X, y)
751752
assert_equal(clf_lib.n_iter_, 2)
@@ -834,7 +835,7 @@ def test_liblinear_decision_function_zero():
834835
# are zero. This is a test to verify that we do not do the same.
835836
# See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600
836837
# and the PR https://github.com/scikit-learn/scikit-learn/pull/3623
837-
X, y = make_classification(n_samples=5, n_features=5)
838+
X, y = make_classification(n_samples=5, n_features=5, random_state=0)
838839
clf = LogisticRegression(fit_intercept=False)
839840
clf.fit(X, y)
840841

@@ -846,7 +847,7 @@ def test_liblinear_decision_function_zero():
846847
def test_liblinear_logregcv_sparse():
847848
# Test LogRegCV with solver='liblinear' works for sparse matrices
848849

849-
X, y = make_classification(n_samples=10, n_features=5)
850+
X, y = make_classification(n_samples=10, n_features=5, random_state=0)
850851
clf = LogisticRegressionCV(solver='liblinear')
851852
clf.fit(sparse.csr_matrix(X), y)
852853

0 commit comments

Comments
 (0)