Skip to content

Commit d0da061

Browse files
author
Hugo Bowne-Anderson
authored
Make small changes to Instructor NB1
1 parent 536c250 commit d0da061

File tree

1 file changed

+26
-33
lines changed

1 file changed

+26
-33
lines changed

notebooks/01-Instructor-Probability_a_simulated_introduction.ipynb

Lines changed: 26 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
},
1010
{
1111
"cell_type": "code",
12-
"execution_count": 3,
12+
"execution_count": 1,
1313
"metadata": {},
1414
"outputs": [],
1515
"source": [
@@ -89,14 +89,14 @@
8989
},
9090
{
9191
"cell_type": "code",
92-
"execution_count": 4,
92+
"execution_count": 2,
9393
"metadata": {},
9494
"outputs": [
9595
{
9696
"data": {
97-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD3CAYAAADi8sSvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEVpJREFUeJzt3X9MlXX/x/HXgSOoR1Bc1NoUJ4aVcy6KsGaS3cW4W/ZD\nTZCzTrVqrtYynEuZC2grU0exGssM150b+COWbqnrxyZYGBmpqS2ntbFi07Iwj/NwcHDwXN8/7kV3\nX/UcvLjggo/Px19yjudzvT+4nufqcLiOx7IsSwAAIyS4PQAAwDlEHQAMQtQBwCBEHQAMQtQBwCBe\nNw/e3h6y/di0tNEKBjsdnGboY89XB/Z8dejPntPTUy5737A9U/d6E90eYdCx56sDe746DNSeh23U\nAQAXI+oAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGcfUyAf3x4LKPXTv2f0r/5dqx\nASAWztQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAM0qeoHzlyRIFAQJJ07Ngx+f1+BQIBPf300zp9\n+rQkqb6+XvPnz1dhYaH27NkzcBMDAC4r7vvUN2zYoB07dmjUqFGSpFWrVqmsrEw333yztm7dqg0b\nNuiZZ55RbW2ttm3bpq6uLvn9fs2aNUtJSUkDvgEAwN/inqlnZGSourq69+uqqirdfPPNkqQLFy4o\nOTlZ33//vbKzs5WUlKSUlBRlZGTo+PHjAzc1AOCS4p6pFxQU6MSJE71fX3vttZKk7777TnV1ddq0\naZP27t2rlJS/PwjV5/Opo6Mj7sHT0kYPy88mjPWhryYf2y3s+erAnp1h6zIBn3zyid59913V1NRo\n/PjxGjNmjMLhcO/94XD4H5G/nOH66eHt7SFXjpuenuLasd3Cnq8O7PnKH3s5V/zul48//lh1dXWq\nra3VxIkTJUkzZszQwYMH1dXVpVAopNbWVk2dOtXWsAAA+67oTP3ChQtatWqVrr/+er3wwguSpNtv\nv11LlixRIBCQ3++XZVlaunSpkpOTB2RgAMDl9SnqEyZMUH19vSTp22+/veTfKSwsVGFhoXOTAQCu\nGL98BAAGIeoAYBCiDgAGGbaffATAWU+taXTt2DvffNi1Y5uGM3UAMAhRBwCDEHUAMAhRBwCDEHUA\nMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAjXU0efuHWtba6z\nDVwZztQBwCBEHQAMQtQBwCC8po4h7cFlH7ty3P+U/suV40ru7flqZOLnsnKmDgAG6VPUjxw5okAg\nIElqa2tTcXGx/H6/KioqFI1GJUn19fWaP3++CgsLtWfPnoGbGABwWXGjvmHDBr388svq6uqSJK1e\nvVolJSXavHmzLMtSQ0OD2tvbVVtbq61bt+r9999XVVWVuru7B3x4AMA/xX1NPSMjQ9XV1Vq+fLkk\n6ejRo8rNzZUk5eXlqbm5WQkJCcrOzlZSUpKSkpKUkZGh48ePa8aMGTHXTksbLa830YFtDK709JSr\n8thXE77Pg+9q/J4PxJ7jRr2goEAnTpzo/dqyLHk8HkmSz+dTKBRSR0eHUlL+Hs7n86mjoyPuwYPB\nTjszu669PeTKcdPTU1w79tWG7/Pguxq/53b3HOvJ4Ip/UJqQ8PdDwuGwUlNTNWbMGIXD4X/c/r+R\nBwAMjiuO+rRp09TS0iJJampqUk5OjmbMmKGDBw+qq6tLoVBIra2tmjp1quPDAgBiu+L3qa9YsUJl\nZWWqqqpSZmamCgoKlJiYqEAgIL/fL8uytHTpUiUnJw/EvACAGPoU9QkTJqi+vl6SNHnyZNXV1V30\ndwoLC1VYWOjsdACAK8IvHwGAQYg6ABiEqAOAQYg6ABiEqzQCcB1XpnQOZ+oAYBCiDgAGIeoAYBCi\nDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCu/QJcwlNrGt0eAbCFM3UAMAhRBwCD\n8PLLMMLlSQHEw5k6ABiEqAOAQYg6ABiEqAOAQYg6ABjE1rtfIpGISktLdfLkSSUkJOjVV1+V1+tV\naWmpPB6PsrKyVFFRoYQEnjMAYDDZivqXX36pnp4ebd26Vc3NzXrrrbcUiURUUlKimTNnqry8XA0N\nDcrPz3d6XgBADLaiPnnyZF24cEHRaFQdHR3yer06fPiwcnNzJUl5eXlqbm6OG/W0tNHyehPtjOCq\n9PQUt0cAYICBaImtqI8ePVonT57U/fffr2AwqPXr12v//v3yeDySJJ/Pp1AoFHedYLDTzuFd194e\nf28AEI/dlsR6MrAV9Y0bN+quu+7SsmXL9Ntvv+mJJ55QJBLpvT8cDis1NdXO0sMCF3sCMFTZ+klm\namqqUlL++0wxduxY9fT0aNq0aWppaZEkNTU1KScnx7kpAQB9YutM/cknn9TKlSvl9/sViUS0dOlS\nTZ8+XWVlZaqqqlJmZqYKCgqcnhUAEIetqPt8Pr399tsX3V5XV9fvgQAA9vFGcgAwCFEHAIMQdQAw\nCFEHAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwCFEH\nAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwiNfuA9977z01NjYqEomo\nuLhYubm5Ki0tlcfjUVZWlioqKpSQwHMGAAwmW9VtaWnRoUOHtGXLFtXW1urUqVNavXq1SkpKtHnz\nZlmWpYaGBqdnBQDEYetM/auvvtLUqVP1/PPPq6OjQ8uXL1d9fb1yc3MlSXl5eWpublZ+fn7MddLS\nRsvrTbQzAgAMe+npKY6vaSvqwWBQv/76q9avX68TJ07oueeek2VZ8ng8kiSfz6dQKNSHdTrtHB4A\njNDeHr+TlxLrycBW1MeNG6fMzEwlJSUpMzNTycnJOnXqVO/94XBYqampdpYGAPSDrdfUb7vtNu3d\nu1eWZen333/X+fPndeedd6qlpUWS1NTUpJycHEcHBQDEZ+tM/Z577tH+/fv16KOPyrIslZeXa8KE\nCSorK1NVVZUyMzNVUFDg9KwAgDhsv6Vx+fLlF91WV1fXr2EAAP3DG8kBwCBEHQAMQtQBwCBEHQAM\nQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQB\nwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAM0q+o//nnn7r77rvV2tqqtrY2FRcXy+/3\nq6KiQtFo1KkZAQB9ZDvqkUhE5eXlGjlypCRp9erVKikp0ebNm2VZlhoaGhwbEgDQN7ajvnbtWi1a\ntEjXXnutJOno0aPKzc2VJOXl5enrr792ZkIAQJ957Txo+/btGj9+vGbPnq2amhpJkmVZ8ng8kiSf\nz6dQKBR3nbS00fJ6E+2MAADDXnp6iuNr2or6tm3b5PF4tG/fPh07dkwrVqzQmTNneu8Ph8NKTU2N\nu04w2Gnn8ABghPb2+Ce/lxLrycBW1Ddt2tT750AgoFdeeUWVlZVqaWnRzJkz1dTUpDvuuMPO0gCA\nfnDsLY0rVqxQdXW1ioqKFIlEVFBQ4NTSAIA+snWm/r9qa2t7/1xXV9ff5QAA/cAvHwGAQYg6ABiE\nqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOA\nQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQbx2HhSJRLRy5Uqd\nPHlS3d3deu6553TDDTeotLRUHo9HWVlZqqioUEICzxkAMJhsRX3Hjh0aN26cKisrdfbsWT3yyCO6\n6aabVFJSopkzZ6q8vFwNDQ3Kz893el4AQAy2TqX//e9/68UXX5QkWZalxMREHT16VLm5uZKkvLw8\nff31185NCQDoE1tn6j6fT5LU0dGhJUuWqKSkRGvXrpXH4+m9PxQKxV0nLW20vN5EOyMAwLCXnp7i\n+Jq2oi5Jv/32m55//nn5/X49+OCDqqys7L0vHA4rNTU17hrBYKfdwwPAsNfeHv/k91JiPRnYevnl\n9OnTeuqpp/TSSy/p0UcflSRNmzZNLS0tkqSmpibl5OTYWRoA0A+2or5+/XqdO3dO69atUyAQUCAQ\nUElJiaqrq1VUVKRIJKKCggKnZwUAxOGxLMty6+B2/9dDkp5a0+jgJAAwuHa++fDQefkFADA0EXUA\nMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhR\nBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDeJ1cLBqN6pVX\nXtGPP/6opKQkvfbaa5o0aZKThwAAxODomfru3bvV3d2tDz/8UMuWLdOaNWucXB4AEIejUT948KBm\nz54tSbrlllv0ww8/OLk8ACAOR19+6ejo0JgxY3q/TkxMVE9Pj7zeSx8mPT3F9rF2vvmw7ccCwFDQ\nnwZejqNn6mPGjFE4HO79OhqNXjboAADnORr1W2+9VU1NTZKkw4cPa+rUqU4uDwCIw2NZluXUYn+9\n++Wnn36SZVl6/fXXNWXKFKeWBwDE4WjUAQDu4pePAMAgRB0ADELUAcAgQz7q0WhU5eXlKioqUiAQ\nUFtb2z/ub2xs1IIFC1RUVKT6+nqXpnRWvD3v2rVLCxcu1KJFi1ReXq5oNOrSpM6It9+/lJWV6Y03\n3hjk6QZGvD1///338vv9Ki4u1pIlS9TV1eXSpM6Jt+cdO3Zo3rx5WrBggTZv3uzSlAPjyJEjCgQC\nF90+IP2yhrjPP//cWrFihWVZlnXo0CHr2Wef7b2vu7vbuu+++6yzZ89aXV1d1vz586329na3RnVM\nrD2fP3/euvfee63Ozk7Lsixr6dKl1u7du12Z0ymx9vuXLVu2WIWFhVZlZeVgjzcgYu05Go1aDz30\nkPXLL79YlmVZ9fX1VmtrqytzOinev/OsWbOsYDBodXV19f53bYKamhpr7ty51sKFC/9x+0D1a8if\nqce69EBra6syMjI0duxYJSUl6bbbbtP+/fvdGtUxsfaclJSkrVu3atSoUZKknp4eJScnuzKnU+Jd\nXuK7777TkSNHVFRU5MZ4AyLWnn/++WeNGzdOGzdu1GOPPaazZ88qMzPTrVEdE+/f+cYbb1QoFFJ3\nd7csy5LH43FjTMdlZGSourr6otsHql9DPuqXu/TAX/elpPz9a7Y+n08dHR2DPqPTYu05ISFB11xz\njSSptrZWnZ2dmjVrlitzOiXWfv/44w+98847Ki8vd2u8ARFrz8FgUIcOHdJjjz2mDz74QN988432\n7dvn1qiOibVnScrKytKCBQv0wAMPaM6cOUpNTXVjTMcVFBRc8jfrB6pfQz7qsS498P/vC4fD//gm\nDVfxLrcQjUa1du1aNTc3q7q6etif0cTa72effaZgMKjFixerpqZGu3bt0vbt290a1TGx9jxu3DhN\nmjRJU6ZM0YgRIzR79mwjLo4Xa8/Hjx/XF198oYaGBjU2NurMmTP69NNP3Rp1UAxUv4Z81GNdemDK\nlClqa2vT2bNn1d3drQMHDig7O9utUR0T73IL5eXl6urq0rp163pfhhnOYu338ccf1/bt21VbW6vF\nixdr7ty5mj9/vlujOibWnidOnKhwONz7g8QDBw4oKyvLlTmdFGvPKSkpGjlypJKTk5WYmKjx48fr\n3Llzbo06KAaqX0P+alv5+flqbm7WokWLei89sHPnTnV2dqqoqEilpaV6+umnZVmWFixYoOuuu87t\nkfst1p6nT5+ujz76SDk5OXriiSck/Td8+fn5Lk9tX7x/YxPF2/OqVau0bNkyWZal7OxszZkzx+2R\n+y3enouKiuT3+zVixAhlZGRo3rx5bo88IAa6X1wmAAAMMuRffgEA9B1RBwCDEHUAMAhRBwCDEHUA\nMAhRBwCDEHUAMMj/Aft2ydZaHWIRAAAAAElFTkSuQmCC\n",
97+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD3CAYAAAANMK+RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAADihJREFUeJzt3X+MZfVZx/H37M4um63DdghTf4VKjfqkSVOJNPxql13NFrotuA0xirWSSkQSV/sLA6VspRqqpcJWqZLqNptVo38oSCjoljaSrAu2oVZquun2IRCxxtRmSmdh6JYtuzv+ce8m03Xmzt1zz8ydeeb9SkjOj3u+5/nO3P3c73zvOYeRmZkZJEkr35phFyBJaoeBLklFGOiSVISBLklFGOiSVMToME8+OTnd+BKb8fGNTE0dbbOcZc8+rw72eXUYpM8TE2Mjc21fsSP00dG1wy5hydnn1cE+rw6L0ecVG+iSpO9noEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEX3dKRoRFwN3ZubWiLgA+ARwAjgGXJeZ34yIG4AbgePAHZn58GIVLUn6/xYM9Ii4GfhV4DvdTX8C/HZmfjkibgRuiYiPAe8G3gBsAB6LiM9l5rFFqluSBnb9Rx8d2rkfuntH6232M0J/BrgG+Ovu+rWZ+Y1Zx78EXAQ83g3wYxHxNPB64Iu9Gh4f3zjQ7a8TE2ONj12p7PPqYJ9Xh7b7vGCgZ+b9EXH+rPVvAETEZcBvAZcDVwLPzzpsGti0UNuDPIxnYmKMycnpxsevRPZ5dbDPq0fTPs/3QdDoaYsR8UvAbcDbMnMyIl4AZp9hDDjSpG1Jq8/VNz047BJKOONAj4h30vnyc2tmfru7+QngIxGxATgLeC1wqLUqJUkLOqNAj4i1wD3A14F/iAiAA5l5e0TcAxykcynkbZn5UtvFSpLm11egZ+azwCXd1XPmec0eYE87ZUmSzpQ3FklSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBUxOuwCJH2/q296cCjn3fuBnxvKedUeR+iSVISBLklFGOiSVERfc+gRcTFwZ2ZujYifAPYBM8AhYGdmnoyI24G3AceB92bmE4tUsyRpDguO0CPiZuBTwIbupt3ArszcDIwAOyLiZ4AtwMXAtcCfLU65kqT59DPl8gxwzaz1C4ED3eX9wDbgTcBnM3MmM78OjEbERKuVSpJ6WnDKJTPvj4jzZ20aycyZ7vI0sAk4G3hu1mtObZ/s1fb4+EZGR9eeUcGnDOvSLoCH7t4xtHNPTIwN7dzDshr7PAz+nJde2z/zJtehn5y1PAYcAV7oLp++vaepqaMNTj98k5PTQznvxMTY0M49LNd/9NGhnHc1XpO92t5by0HTn/l8HwRNrnJ5MiK2dpe3AweBx4ErI2JNRLwaWJOZ32pSqCSpmSYj9JuAPRGxHjgM3JeZJyLiIPB5Oh8SO1usUZLUh74CPTOfBS7pLj9F54qW01/zYeDD7ZUmSToT3lgkSUUY6JJUhIEuSUX4+NwGhnUp3TCvf5e0/DlCl6QiHKFLcxjWX2HSIByhS1IRBrokFeGUywri/2tSUi+O0CWpCEfoWpBfEEorgyN0SSrCQJekIgx0SSrCQJekIgx0SSrCQJekIgx0SSrCQJekIgx0SSrCO0UlAd4RXIEjdEkqwkCXpCIMdEkqwkCXpCIMdEkqotFVLhGxDvhL4HzgBHADcBzYB8wAh4CdmXmylSolSQtqOkJ/KzCamZcBvw98BNgN7MrMzcAIsKOdEiVJ/Wga6E8BoxGxBjgbeBm4EDjQ3b8f2DZ4eZKkfjW9sehFOtMtXwPOBa4CLs/Mme7+aWDTQo2Mj29kdHRtwxIkaWWbmBhrtb2mgf4+4JHMvDUizgMeBdbP2j8GHFmokampow1PL0kr3+TkdKPj5vsgaDrlMgU8313+NrAOeDIitna3bQcONmxbktRA0xH6x4G9EXGQzsj8g8C/AXsiYj1wGLivnRIlSf1oFOiZ+SLwi3Ps2jJYOZKkpryxSJKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqYjRpgdGxK3AzwPrgXuBA8A+YAY4BOzMzJMt1ChJ6kOjEXpEbAUuA94IbAHOA3YDuzJzMzAC7GipRklSH5pOuVwJfAV4AHgIeBi4kM4oHWA/sG3g6iRJfWs65XIu8GPAVcBrgE8DazJzprt/Gti0UCPj4xsZHV3bsARJWtkmJsZaba9poD8HfC0zvwdkRLxEZ9rllDHgyEKNTE0dbXh6SVr5JienGx033wdB0ymXx4C3RMRIRPwI8Argn7tz6wDbgYMN25YkNdBohJ6ZD0fE5cATdD4UdgL/CeyJiPXAYeC+1qqUJC2o8WWLmXnzHJu3DFCLJGkA3lgkSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUWMDnJwRLwK+BLwZuA4sA+YAQ4BOzPz5KAFSpL603iEHhHrgD8HvtvdtBvYlZmbgRFgx+DlSZL6NcgI/S7gk8Ct3fULgQPd5f3AFcADvRoYH9/I6OjaAUqQpJVrYmKs1fYaBXpEvAuYzMxHIuJUoI9k5kx3eRrYtFA7U1NHm5xekkqYnJxudNx8HwRNR+jXAzMRsQ24APgr4FWz9o8BRxq2LUlqoNEcemZenplbMnMr8GXgOmB/RGztvmQ7cLCVCiVJfRnoKpfT3ATsiYj1wGHgvhbbliQtYOBA747ST9kyaHuSpGa8sUiSijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJamI0SYHRcQ6YC9wPnAWcAfwVWAfMAMcAnZm5slWqpQkLajpCP2dwHOZuRnYDvwpsBvY1d02Auxop0RJUj+aBvrfAx+atX4cuBA40F3fD2wboC5J0hlqNOWSmS8CRMQYcB+wC7grM2e6L5kGNi3Uzvj4RkZH1zYpQZJWvImJsVbbaxToABFxHvAAcG9m/m1EfGzW7jHgyEJtTE0dbXp6SVrxJienGx033wdBoymXiPhB4LPALZm5t7v5yYjY2l3eDhxs0rYkqZmmI/QPAuPAhyLi1Fz6e4B7ImI9cJjOVIwkaYk0nUN/D50AP92WwcqRJDXljUWSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFjLbZWESsAe4Ffho4Bvx6Zj7d5jkkSXNre4T+dmBDZl4KfAC4u+X2JUnzaDvQ3wR8BiAzvwC8oeX2JUnzaHXKBTgbeH7W+omIGM3M43O9eGJibKTpiR66e0fTQyVpWZiYGGu1vbZH6C8AsytcM1+YS5La1XagPw68FSAiLgG+0nL7kqR5tD3l8gDw5oj4V2AE+LWW25ckzWNkZmZm2DVIklrgjUWSVISBLklFGOiSVETbX4q2aqFHCUTEDcCNwHHgjsx8eCiFtqiPPr8PuLa7+k+Z+XtLX2W7+nlkRPc1/wg8mJmfXPoq29XH73k7cHt39d+BnZm5or/w6qPPvwP8MnAS+IPMfGAohS6CiLgYuDMzt562/Wrgd+lk2N7M3DPIeZb7CH3eRwlExA8B7wbeCFwJ/GFEnDWUKtvVq88/DvwKcBlwKXBFRLx+KFW2q59HRtwBnLOkVS2uXr/nMeCPgKsy8xLgWeDcYRTZsl59fiWdf8+XAlcAfzyUChdBRNwMfArYcNr2dcDH6fR3C/Ab3VxrbLkHeq9HCVwEPJ6ZxzLzeeBpoEK49erzfwNvycwTmXkSWAe8tPQltq7nIyMi4hfojNr2L31pi6ZXny+jcw/H3RFxEPhmZk4ufYmt69Xn7wD/Bbyi+9/JJa9u8TwDXDPH9tcCT2fmVGZ+D3gM2DzIiZZ7oM/5KIF59k0Dm5aqsEU0b58z8+XM/FZEjETEXcCTmfnUUKps17x9jojXAe+g82dpJb3e2+cCPwvcAmwH3hsRP7XE9S2GXn2GzoDlq3SmmO5ZysIWU2beD7w8x67WM2y5B3qvRwmcvm8MOLJUhS2ino9PiIgNwN90X/ObS1zbYunV5+uAHwUeBd4FvD8i3rK05S2KXn1+DvhiZv5vZr4I/AtwwVIXuAh69Xk78MPAa4BXA2+PiIuWuL6l1nqGLfdA7/UogSeAzRGxISI20fnz5dDSl9i6efscESPAg8B/ZOaNmXliOCW2bt4+Z+bNmXlx98ukfcDuzPzMMIpsWa/39peA10XEud0R7CV0Rq4rXa8+TwHfBY5l5kt0gu2VS17h0joM/GREnBMR64HLgc8P0uCyvsqFOR4lEBHvpzPv9OmIuAc4SOeD6bbuG2Glm7fPwFo6X56c1b0KAuDWzBzoTbAM9Pw9D7e0RbPQe/tW4JHua/8uMysMVhbq8zbgCxFxks588ueGWOuiiYh3AD+QmX/R7f8jdDJsb2b+zyBte+u/JBWx3KdcJEl9MtAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKK+D/pcoXCeNUQAAAAAABJRU5ErkJggg==\n",
9898
"text/plain": [
99-
"<matplotlib.figure.Figure at 0x1133a8908>"
99+
"<Figure size 432x288 with 1 Axes>"
100100
]
101101
},
102102
"metadata": {},
@@ -118,24 +118,24 @@
118118
},
119119
{
120120
"cell_type": "code",
121-
"execution_count": 6,
121+
"execution_count": 3,
122122
"metadata": {},
123123
"outputs": [
124124
{
125125
"data": {
126126
"text/plain": [
127-
"'Number of clicks = 498'"
127+
"'Number of clicks = 477'"
128128
]
129129
},
130-
"execution_count": 6,
130+
"execution_count": 3,
131131
"metadata": {},
132132
"output_type": "execute_result"
133133
}
134134
],
135135
"source": [
136136
"# Computed how many people click\n",
137137
"clicks = x <= 0.5\n",
138-
"n_clicks = sum(pop)\n",
138+
"n_clicks = sum(clicks)\n",
139139
"f\"Number of clicks = {n_clicks}\""
140140
]
141141
},
@@ -148,16 +148,16 @@
148148
},
149149
{
150150
"cell_type": "code",
151-
"execution_count": 7,
151+
"execution_count": 4,
152152
"metadata": {},
153153
"outputs": [
154154
{
155155
"data": {
156156
"text/plain": [
157-
"'Proportion who clicked = 0.498'"
157+
"'Proportion who clicked = 0.477'"
158158
]
159159
},
160-
"execution_count": 7,
160+
"execution_count": 4,
161161
"metadata": {},
162162
"output_type": "execute_result"
163163
}
@@ -207,15 +207,15 @@
207207
},
208208
{
209209
"cell_type": "code",
210-
"execution_count": 9,
210+
"execution_count": 5,
211211
"metadata": {},
212212
"outputs": [
213213
{
214214
"name": "stdout",
215215
"output_type": "stream",
216216
"text": [
217-
"Number of clicks = 688\n",
218-
"Proportion who clicked = 0.688\n"
217+
"Number of clicks = 676\n",
218+
"Proportion who clicked = 0.676\n"
219219
]
220220
}
221221
],
@@ -367,7 +367,7 @@
367367
{
368368
"data": {
369369
"text/plain": [
370-
"0.8508064516129032"
370+
"0.8514056224899599"
371371
]
372372
},
373373
"execution_count": 8,
@@ -404,7 +404,7 @@
404404
{
405405
"data": {
406406
"text/plain": [
407-
"0.8519"
407+
"0.852"
408408
]
409409
},
410410
"execution_count": 9,
@@ -611,9 +611,7 @@
611611
"cell_type": "markdown",
612612
"metadata": {},
613613
"source": [
614-
"**Note:** you may have noticed that the _binomial distribution_ can take on only a finite number of values, whereas the _uniform distribution_ above can take on any number between $0$ and $1$. These are different enough cases to warrant special mention of this & two different names: the former is called a _probability mass function_ (PMF) and the latter a _probability distribution function_ (PDF). Time permitting, we may discuss some of the subtleties here. If not, all good texts will cover this. I like (Sivia & Skilling, 2006), among many others.\n",
615-
"\n",
616-
"**HBA: should this note ^ have come earlier?** "
614+
"**Note:** you may have noticed that the _binomial distribution_ can take on only a finite number of values, whereas the _uniform distribution_ above can take on any number between $0$ and $1$. These are different enough cases to warrant special mention of this & two different names: the former is called a _probability mass function_ (PMF) and the latter a _probability distribution function_ (PDF). Time permitting, we may discuss some of the subtleties here. If not, all good texts will cover this. I like (Sivia & Skilling, 2006), among many others.\n"
617615
]
618616
},
619617
{
@@ -637,7 +635,9 @@
637635
"We have already encountered joint probabilities above, perhaps without knowing it: $P(A,B)$ is the probability two events $A$ and $B$ _both_ occurring.\n",
638636
"* For example, getting two heads in a row.\n",
639637
"\n",
640-
"If $A$ and $B$ are independent, then $P(A,B)=P(A)P(B)$ but be warned: this is not always (or often) the case."
638+
"If $A$ and $B$ are independent, then $P(A,B)=P(A)P(B)$ but be warned: this is not always (or often) the case.\n",
639+
"\n",
640+
"One way to think of this is considering \"AND\" as multiplication: the probability of A **and** B is the probability of A **multiplied** by the probability of B."
641641
]
642642
},
643643
{
@@ -748,7 +748,7 @@
748748
{
749749
"data": {
750750
"text/plain": [
751-
"0.7238716181061394"
751+
"0.724891534007516"
752752
]
753753
},
754754
"execution_count": 17,
@@ -778,7 +778,7 @@
778778
{
779779
"data": {
780780
"text/plain": [
781-
"0.722899474"
781+
"0.7238861042000001"
782782
]
783783
},
784784
"execution_count": 18,
@@ -809,7 +809,7 @@
809809
{
810810
"data": {
811811
"text/plain": [
812-
"0.72392"
812+
"0.72493"
813813
]
814814
},
815815
"execution_count": 19,
@@ -871,7 +871,7 @@
871871
{
872872
"data": {
873873
"text/plain": [
874-
"0.8508064516129032"
874+
"0.8514056224899599"
875875
]
876876
},
877877
"execution_count": 20,
@@ -949,13 +949,6 @@
949949
"**Homework exercise for the avid learner:** verify the above relationship using simulation/resampling techniques in one of the cases above."
950950
]
951951
},
952-
{
953-
"cell_type": "markdown",
954-
"metadata": {},
955-
"source": [
956-
"**TO-DO HBA: include Venn Diagram? Include mention earlier of probability AND being multiplication.**"
957-
]
958-
},
959952
{
960953
"cell_type": "markdown",
961954
"metadata": {},
@@ -1014,7 +1007,7 @@
10141007
{
10151008
"data": {
10161009
"text/plain": [
1017-
"array([0.30026281])"
1010+
"array([0.32798931])"
10181011
]
10191012
},
10201013
"execution_count": 25,
@@ -1137,7 +1130,7 @@
11371130
"name": "python",
11381131
"nbconvert_exporter": "python",
11391132
"pygments_lexer": "ipython3",
1140-
"version": "3.6.1"
1133+
"version": "3.6.6"
11411134
}
11421135
},
11431136
"nbformat": 4,

0 commit comments

Comments
 (0)