|
9 | 9 | }, |
10 | 10 | { |
11 | 11 | "cell_type": "code", |
12 | | - "execution_count": 3, |
| 12 | + "execution_count": 1, |
13 | 13 | "metadata": {}, |
14 | 14 | "outputs": [], |
15 | 15 | "source": [ |
|
89 | 89 | }, |
90 | 90 | { |
91 | 91 | "cell_type": "code", |
92 | | - "execution_count": 4, |
| 92 | + "execution_count": 2, |
93 | 93 | "metadata": {}, |
94 | 94 | "outputs": [ |
95 | 95 | { |
96 | 96 | "data": { |
97 | | - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD3CAYAAADi8sSvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEVpJREFUeJzt3X9MlXX/x/HXgSOoR1Bc1NoUJ4aVcy6KsGaS3cW4W/ZD\nTZCzTrVqrtYynEuZC2grU0exGssM150b+COWbqnrxyZYGBmpqS2ntbFi07Iwj/NwcHDwXN8/7kV3\nX/UcvLjggo/Px19yjudzvT+4nufqcLiOx7IsSwAAIyS4PQAAwDlEHQAMQtQBwCBEHQAMQtQBwCBe\nNw/e3h6y/di0tNEKBjsdnGboY89XB/Z8dejPntPTUy5737A9U/d6E90eYdCx56sDe746DNSeh23U\nAQAXI+oAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGcfUyAf3x4LKPXTv2f0r/5dqx\nASAWztQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAM0qeoHzlyRIFAQJJ07Ngx+f1+BQIBPf300zp9\n+rQkqb6+XvPnz1dhYaH27NkzcBMDAC4r7vvUN2zYoB07dmjUqFGSpFWrVqmsrEw333yztm7dqg0b\nNuiZZ55RbW2ttm3bpq6uLvn9fs2aNUtJSUkDvgEAwN/inqlnZGSourq69+uqqirdfPPNkqQLFy4o\nOTlZ33//vbKzs5WUlKSUlBRlZGTo+PHjAzc1AOCS4p6pFxQU6MSJE71fX3vttZKk7777TnV1ddq0\naZP27t2rlJS/PwjV5/Opo6Mj7sHT0kYPy88mjPWhryYf2y3s+erAnp1h6zIBn3zyid59913V1NRo\n/PjxGjNmjMLhcO/94XD4H5G/nOH66eHt7SFXjpuenuLasd3Cnq8O7PnKH3s5V/zul48//lh1dXWq\nra3VxIkTJUkzZszQwYMH1dXVpVAopNbWVk2dOtXWsAAA+67oTP3ChQtatWqVrr/+er3wwguSpNtv\nv11LlixRIBCQ3++XZVlaunSpkpOTB2RgAMDl9SnqEyZMUH19vSTp22+/veTfKSwsVGFhoXOTAQCu\nGL98BAAGIeoAYBCiDgAGGbaffATAWU+taXTt2DvffNi1Y5uGM3UAMAhRBwCDEHUAMAhRBwCDEHUA\nMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAjXU0efuHWtba6z\nDVwZztQBwCBEHQAMQtQBwCC8po4h7cFlH7ty3P+U/suV40ru7flqZOLnsnKmDgAG6VPUjxw5okAg\nIElqa2tTcXGx/H6/KioqFI1GJUn19fWaP3++CgsLtWfPnoGbGABwWXGjvmHDBr388svq6uqSJK1e\nvVolJSXavHmzLMtSQ0OD2tvbVVtbq61bt+r9999XVVWVuru7B3x4AMA/xX1NPSMjQ9XV1Vq+fLkk\n6ejRo8rNzZUk5eXlqbm5WQkJCcrOzlZSUpKSkpKUkZGh48ePa8aMGTHXTksbLa830YFtDK709JSr\n8thXE77Pg+9q/J4PxJ7jRr2goEAnTpzo/dqyLHk8HkmSz+dTKBRSR0eHUlL+Hs7n86mjoyPuwYPB\nTjszu669PeTKcdPTU1w79tWG7/Pguxq/53b3HOvJ4Ip/UJqQ8PdDwuGwUlNTNWbMGIXD4X/c/r+R\nBwAMjiuO+rRp09TS0iJJampqUk5OjmbMmKGDBw+qq6tLoVBIra2tmjp1quPDAgBiu+L3qa9YsUJl\nZWWqqqpSZmamCgoKlJiYqEAgIL/fL8uytHTpUiUnJw/EvACAGPoU9QkTJqi+vl6SNHnyZNXV1V30\ndwoLC1VYWOjsdACAK8IvHwGAQYg6ABiEqAOAQYg6ABiEqzQCcB1XpnQOZ+oAYBCiDgAGIeoAYBCi\nDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCiDgAGIeoAYBCu/QJcwlNrGt0eAbCFM3UAMAhRBwCD\n8PLLMMLlSQHEw5k6ABiEqAOAQYg6ABiEqAOAQYg6ABjE1rtfIpGISktLdfLkSSUkJOjVV1+V1+tV\naWmpPB6PsrKyVFFRoYQEnjMAYDDZivqXX36pnp4ebd26Vc3NzXrrrbcUiURUUlKimTNnqry8XA0N\nDcrPz3d6XgBADLaiPnnyZF24cEHRaFQdHR3yer06fPiwcnNzJUl5eXlqbm6OG/W0tNHyehPtjOCq\n9PQUt0cAYICBaImtqI8ePVonT57U/fffr2AwqPXr12v//v3yeDySJJ/Pp1AoFHedYLDTzuFd194e\nf28AEI/dlsR6MrAV9Y0bN+quu+7SsmXL9Ntvv+mJJ55QJBLpvT8cDis1NdXO0sMCF3sCMFTZ+klm\namqqUlL++0wxduxY9fT0aNq0aWppaZEkNTU1KScnx7kpAQB9YutM/cknn9TKlSvl9/sViUS0dOlS\nTZ8+XWVlZaqqqlJmZqYKCgqcnhUAEIetqPt8Pr399tsX3V5XV9fvgQAA9vFGcgAwCFEHAIMQdQAw\nCFEHAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwCFEH\nAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwCFEHAIMQdQAwiNfuA9977z01NjYqEomo\nuLhYubm5Ki0tlcfjUVZWlioqKpSQwHMGAAwmW9VtaWnRoUOHtGXLFtXW1urUqVNavXq1SkpKtHnz\nZlmWpYaGBqdnBQDEYetM/auvvtLUqVP1/PPPq6OjQ8uXL1d9fb1yc3MlSXl5eWpublZ+fn7MddLS\nRsvrTbQzAgAMe+npKY6vaSvqwWBQv/76q9avX68TJ07oueeek2VZ8ng8kiSfz6dQKNSHdTrtHB4A\njNDeHr+TlxLrycBW1MeNG6fMzEwlJSUpMzNTycnJOnXqVO/94XBYqampdpYGAPSDrdfUb7vtNu3d\nu1eWZen333/X+fPndeedd6qlpUWS1NTUpJycHEcHBQDEZ+tM/Z577tH+/fv16KOPyrIslZeXa8KE\nCSorK1NVVZUyMzNVUFDg9KwAgDhsv6Vx+fLlF91WV1fXr2EAAP3DG8kBwCBEHQAMQtQBwCBEHQAM\nQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQB\nwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAMQtQBwCBEHQAM0q+o//nnn7r77rvV2tqqtrY2FRcXy+/3\nq6KiQtFo1KkZAQB9ZDvqkUhE5eXlGjlypCRp9erVKikp0ebNm2VZlhoaGhwbEgDQN7ajvnbtWi1a\ntEjXXnutJOno0aPKzc2VJOXl5enrr792ZkIAQJ957Txo+/btGj9+vGbPnq2amhpJkmVZ8ng8kiSf\nz6dQKBR3nbS00fJ6E+2MAADDXnp6iuNr2or6tm3b5PF4tG/fPh07dkwrVqzQmTNneu8Ph8NKTU2N\nu04w2Gnn8ABghPb2+Ce/lxLrycBW1Ddt2tT750AgoFdeeUWVlZVqaWnRzJkz1dTUpDvuuMPO0gCA\nfnDsLY0rVqxQdXW1ioqKFIlEVFBQ4NTSAIA+snWm/r9qa2t7/1xXV9ff5QAA/cAvHwGAQYg6ABiE\nqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOA\nQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQYg6ABiEqAOAQbx2HhSJRLRy5Uqd\nPHlS3d3deu6553TDDTeotLRUHo9HWVlZqqioUEICzxkAMJhsRX3Hjh0aN26cKisrdfbsWT3yyCO6\n6aabVFJSopkzZ6q8vFwNDQ3Kz893el4AQAy2TqX//e9/68UXX5QkWZalxMREHT16VLm5uZKkvLw8\nff31185NCQDoE1tn6j6fT5LU0dGhJUuWqKSkRGvXrpXH4+m9PxQKxV0nLW20vN5EOyMAwLCXnp7i\n+Jq2oi5Jv/32m55//nn5/X49+OCDqqys7L0vHA4rNTU17hrBYKfdwwPAsNfeHv/k91JiPRnYevnl\n9OnTeuqpp/TSSy/p0UcflSRNmzZNLS0tkqSmpibl5OTYWRoA0A+2or5+/XqdO3dO69atUyAQUCAQ\nUElJiaqrq1VUVKRIJKKCggKnZwUAxOGxLMty6+B2/9dDkp5a0+jgJAAwuHa++fDQefkFADA0EXUA\nMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhR\nBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDEHUAMAhRBwCDeJ1cLBqN6pVX\nXtGPP/6opKQkvfbaa5o0aZKThwAAxODomfru3bvV3d2tDz/8UMuWLdOaNWucXB4AEIejUT948KBm\nz54tSbrlllv0ww8/OLk8ACAOR19+6ejo0JgxY3q/TkxMVE9Pj7zeSx8mPT3F9rF2vvmw7ccCwFDQ\nnwZejqNn6mPGjFE4HO79OhqNXjboAADnORr1W2+9VU1NTZKkw4cPa+rUqU4uDwCIw2NZluXUYn+9\n++Wnn36SZVl6/fXXNWXKFKeWBwDE4WjUAQDu4pePAMAgRB0ADELUAcAgQz7q0WhU5eXlKioqUiAQ\nUFtb2z/ub2xs1IIFC1RUVKT6+nqXpnRWvD3v2rVLCxcu1KJFi1ReXq5oNOrSpM6It9+/lJWV6Y03\n3hjk6QZGvD1///338vv9Ki4u1pIlS9TV1eXSpM6Jt+cdO3Zo3rx5WrBggTZv3uzSlAPjyJEjCgQC\nF90+IP2yhrjPP//cWrFihWVZlnXo0CHr2Wef7b2vu7vbuu+++6yzZ89aXV1d1vz586329na3RnVM\nrD2fP3/euvfee63Ozk7Lsixr6dKl1u7du12Z0ymx9vuXLVu2WIWFhVZlZeVgjzcgYu05Go1aDz30\nkPXLL79YlmVZ9fX1VmtrqytzOinev/OsWbOsYDBodXV19f53bYKamhpr7ty51sKFC/9x+0D1a8if\nqce69EBra6syMjI0duxYJSUl6bbbbtP+/fvdGtUxsfaclJSkrVu3atSoUZKknp4eJScnuzKnU+Jd\nXuK7777TkSNHVFRU5MZ4AyLWnn/++WeNGzdOGzdu1GOPPaazZ88qMzPTrVEdE+/f+cYbb1QoFFJ3\nd7csy5LH43FjTMdlZGSourr6otsHql9DPuqXu/TAX/elpPz9a7Y+n08dHR2DPqPTYu05ISFB11xz\njSSptrZWnZ2dmjVrlitzOiXWfv/44w+98847Ki8vd2u8ARFrz8FgUIcOHdJjjz2mDz74QN988432\n7dvn1qiOibVnScrKytKCBQv0wAMPaM6cOUpNTXVjTMcVFBRc8jfrB6pfQz7qsS498P/vC4fD//gm\nDVfxLrcQjUa1du1aNTc3q7q6etif0cTa72effaZgMKjFixerpqZGu3bt0vbt290a1TGx9jxu3DhN\nmjRJU6ZM0YgRIzR79mwjLo4Xa8/Hjx/XF198oYaGBjU2NurMmTP69NNP3Rp1UAxUv4Z81GNdemDK\nlClqa2vT2bNn1d3drQMHDig7O9utUR0T73IL5eXl6urq0rp163pfhhnOYu338ccf1/bt21VbW6vF\nixdr7ty5mj9/vlujOibWnidOnKhwONz7g8QDBw4oKyvLlTmdFGvPKSkpGjlypJKTk5WYmKjx48fr\n3Llzbo06KAaqX0P+alv5+flqbm7WokWLei89sHPnTnV2dqqoqEilpaV6+umnZVmWFixYoOuuu87t\nkfst1p6nT5+ujz76SDk5OXriiSck/Td8+fn5Lk9tX7x/YxPF2/OqVau0bNkyWZal7OxszZkzx+2R\n+y3enouKiuT3+zVixAhlZGRo3rx5bo88IAa6X1wmAAAMMuRffgEA9B1RBwCDEHUAMAhRBwCDEHUA\nMAhRBwCDEHUAMMj/Aft2ydZaHWIRAAAAAElFTkSuQmCC\n", |
| 97 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD3CAYAAAANMK+RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAADihJREFUeJzt3X+MZfVZx/H37M4um63DdghTf4VKjfqkSVOJNPxql13NFrotuA0xirWSSkQSV/sLA6VspRqqpcJWqZLqNptVo38oSCjoljaSrAu2oVZquun2IRCxxtRmSmdh6JYtuzv+ce8m03Xmzt1zz8ydeeb9SkjOj3u+5/nO3P3c73zvOYeRmZkZJEkr35phFyBJaoeBLklFGOiSVISBLklFGOiSVMToME8+OTnd+BKb8fGNTE0dbbOcZc8+rw72eXUYpM8TE2Mjc21fsSP00dG1wy5hydnn1cE+rw6L0ecVG+iSpO9noEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEX3dKRoRFwN3ZubWiLgA+ARwAjgGXJeZ34yIG4AbgePAHZn58GIVLUn6/xYM9Ii4GfhV4DvdTX8C/HZmfjkibgRuiYiPAe8G3gBsAB6LiM9l5rFFqluSBnb9Rx8d2rkfuntH6232M0J/BrgG+Ovu+rWZ+Y1Zx78EXAQ83g3wYxHxNPB64Iu9Gh4f3zjQ7a8TE2ONj12p7PPqYJ9Xh7b7vGCgZ+b9EXH+rPVvAETEZcBvAZcDVwLPzzpsGti0UNuDPIxnYmKMycnpxsevRPZ5dbDPq0fTPs/3QdDoaYsR8UvAbcDbMnMyIl4AZp9hDDjSpG1Jq8/VNz047BJKOONAj4h30vnyc2tmfru7+QngIxGxATgLeC1wqLUqJUkLOqNAj4i1wD3A14F/iAiAA5l5e0TcAxykcynkbZn5UtvFSpLm11egZ+azwCXd1XPmec0eYE87ZUmSzpQ3FklSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBVhoEtSEQa6JBUxOuwCJH2/q296cCjn3fuBnxvKedUeR+iSVISBLklFGOiSVERfc+gRcTFwZ2ZujYifAPYBM8AhYGdmnoyI24G3AceB92bmE4tUsyRpDguO0CPiZuBTwIbupt3ArszcDIwAOyLiZ4AtwMXAtcCfLU65kqT59DPl8gxwzaz1C4ED3eX9wDbgTcBnM3MmM78OjEbERKuVSpJ6WnDKJTPvj4jzZ20aycyZ7vI0sAk4G3hu1mtObZ/s1fb4+EZGR9eeUcGnDOvSLoCH7t4xtHNPTIwN7dzDshr7PAz+nJde2z/zJtehn5y1PAYcAV7oLp++vaepqaMNTj98k5PTQznvxMTY0M49LNd/9NGhnHc1XpO92t5by0HTn/l8HwRNrnJ5MiK2dpe3AweBx4ErI2JNRLwaWJOZ32pSqCSpmSYj9JuAPRGxHjgM3JeZJyLiIPB5Oh8SO1usUZLUh74CPTOfBS7pLj9F54qW01/zYeDD7ZUmSToT3lgkSUUY6JJUhIEuSUX4+NwGhnUp3TCvf5e0/DlCl6QiHKFLcxjWX2HSIByhS1IRBrokFeGUywri/2tSUi+O0CWpCEfoWpBfEEorgyN0SSrCQJekIgx0SSrCQJekIgx0SSrCQJekIgx0SSrCQJekIgx0SSrCO0UlAd4RXIEjdEkqwkCXpCIMdEkqwkCXpCIMdEkqotFVLhGxDvhL4HzgBHADcBzYB8wAh4CdmXmylSolSQtqOkJ/KzCamZcBvw98BNgN7MrMzcAIsKOdEiVJ/Wga6E8BoxGxBjgbeBm4EDjQ3b8f2DZ4eZKkfjW9sehFOtMtXwPOBa4CLs/Mme7+aWDTQo2Mj29kdHRtwxIkaWWbmBhrtb2mgf4+4JHMvDUizgMeBdbP2j8GHFmokampow1PL0kr3+TkdKPj5vsgaDrlMgU8313+NrAOeDIitna3bQcONmxbktRA0xH6x4G9EXGQzsj8g8C/AXsiYj1wGLivnRIlSf1oFOiZ+SLwi3Ps2jJYOZKkpryxSJKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKKMNAlqYjRpgdGxK3AzwPrgXuBA8A+YAY4BOzMzJMt1ChJ6kOjEXpEbAUuA94IbAHOA3YDuzJzMzAC7GipRklSH5pOuVwJfAV4AHgIeBi4kM4oHWA/sG3g6iRJfWs65XIu8GPAVcBrgE8DazJzprt/Gti0UCPj4xsZHV3bsARJWtkmJsZaba9poD8HfC0zvwdkRLxEZ9rllDHgyEKNTE0dbXh6SVr5JienGx033wdB0ymXx4C3RMRIRPwI8Argn7tz6wDbgYMN25YkNdBohJ6ZD0fE5cATdD4UdgL/CeyJiPXAYeC+1qqUJC2o8WWLmXnzHJu3DFCLJGkA3lgkSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUUY6JJUhIEuSUWMDnJwRLwK+BLwZuA4sA+YAQ4BOzPz5KAFSpL603iEHhHrgD8HvtvdtBvYlZmbgRFgx+DlSZL6NcgI/S7gk8Ct3fULgQPd5f3AFcADvRoYH9/I6OjaAUqQpJVrYmKs1fYaBXpEvAuYzMxHIuJUoI9k5kx3eRrYtFA7U1NHm5xekkqYnJxudNx8HwRNR+jXAzMRsQ24APgr4FWz9o8BRxq2LUlqoNEcemZenplbMnMr8GXgOmB/RGztvmQ7cLCVCiVJfRnoKpfT3ATsiYj1wGHgvhbbliQtYOBA747ST9kyaHuSpGa8sUiSijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJakIA12SijDQJamI0SYHRcQ6YC9wPnAWcAfwVWAfMAMcAnZm5slWqpQkLajpCP2dwHOZuRnYDvwpsBvY1d02Auxop0RJUj+aBvrfAx+atX4cuBA40F3fD2wboC5J0hlqNOWSmS8CRMQYcB+wC7grM2e6L5kGNi3Uzvj4RkZH1zYpQZJWvImJsVbbaxToABFxHvAAcG9m/m1EfGzW7jHgyEJtTE0dbXp6SVrxJienGx033wdBoymXiPhB4LPALZm5t7v5yYjY2l3eDhxs0rYkqZmmI/QPAuPAhyLi1Fz6e4B7ImI9cJjOVIwkaYk0nUN/D50AP92WwcqRJDXljUWSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFGOiSVISBLklFjLbZWESsAe4Ffho4Bvx6Zj7d5jkkSXNre4T+dmBDZl4KfAC4u+X2JUnzaDvQ3wR8BiAzvwC8oeX2JUnzaHXKBTgbeH7W+omIGM3M43O9eGJibKTpiR66e0fTQyVpWZiYGGu1vbZH6C8AsytcM1+YS5La1XagPw68FSAiLgG+0nL7kqR5tD3l8gDw5oj4V2AE+LWW25ckzWNkZmZm2DVIklrgjUWSVISBLklFGOiSVETbX4q2aqFHCUTEDcCNwHHgjsx8eCiFtqiPPr8PuLa7+k+Z+XtLX2W7+nlkRPc1/wg8mJmfXPoq29XH73k7cHt39d+BnZm5or/w6qPPvwP8MnAS+IPMfGAohS6CiLgYuDMzt562/Wrgd+lk2N7M3DPIeZb7CH3eRwlExA8B7wbeCFwJ/GFEnDWUKtvVq88/DvwKcBlwKXBFRLx+KFW2q59HRtwBnLOkVS2uXr/nMeCPgKsy8xLgWeDcYRTZsl59fiWdf8+XAlcAfzyUChdBRNwMfArYcNr2dcDH6fR3C/Ab3VxrbLkHeq9HCVwEPJ6ZxzLzeeBpoEK49erzfwNvycwTmXkSWAe8tPQltq7nIyMi4hfojNr2L31pi6ZXny+jcw/H3RFxEPhmZk4ufYmt69Xn7wD/Bbyi+9/JJa9u8TwDXDPH9tcCT2fmVGZ+D3gM2DzIiZZ7oM/5KIF59k0Dm5aqsEU0b58z8+XM/FZEjETEXcCTmfnUUKps17x9jojXAe+g82dpJb3e2+cCPwvcAmwH3hsRP7XE9S2GXn2GzoDlq3SmmO5ZysIWU2beD7w8x67WM2y5B3qvRwmcvm8MOLJUhS2ino9PiIgNwN90X/ObS1zbYunV5+uAHwUeBd4FvD8i3rK05S2KXn1+DvhiZv5vZr4I/AtwwVIXuAh69Xk78MPAa4BXA2+PiIuWuL6l1nqGLfdA7/UogSeAzRGxISI20fnz5dDSl9i6efscESPAg8B/ZOaNmXliOCW2bt4+Z+bNmXlx98ukfcDuzPzMMIpsWa/39peA10XEud0R7CV0Rq4rXa8+TwHfBY5l5kt0gu2VS17h0joM/GREnBMR64HLgc8P0uCyvsqFOR4lEBHvpzPv9OmIuAc4SOeD6bbuG2Glm7fPwFo6X56c1b0KAuDWzBzoTbAM9Pw9D7e0RbPQe/tW4JHua/8uMysMVhbq8zbgCxFxks588ueGWOuiiYh3AD+QmX/R7f8jdDJsb2b+zyBte+u/JBWx3KdcJEl9MtAlqQgDXZKKMNAlqQgDXZKKMNAlqQgDXZKK+D/pcoXCeNUQAAAAAABJRU5ErkJggg==\n", |
98 | 98 | "text/plain": [ |
99 | | - "<matplotlib.figure.Figure at 0x1133a8908>" |
| 99 | + "<Figure size 432x288 with 1 Axes>" |
100 | 100 | ] |
101 | 101 | }, |
102 | 102 | "metadata": {}, |
|
118 | 118 | }, |
119 | 119 | { |
120 | 120 | "cell_type": "code", |
121 | | - "execution_count": 6, |
| 121 | + "execution_count": 3, |
122 | 122 | "metadata": {}, |
123 | 123 | "outputs": [ |
124 | 124 | { |
125 | 125 | "data": { |
126 | 126 | "text/plain": [ |
127 | | - "'Number of clicks = 498'" |
| 127 | + "'Number of clicks = 477'" |
128 | 128 | ] |
129 | 129 | }, |
130 | | - "execution_count": 6, |
| 130 | + "execution_count": 3, |
131 | 131 | "metadata": {}, |
132 | 132 | "output_type": "execute_result" |
133 | 133 | } |
134 | 134 | ], |
135 | 135 | "source": [ |
136 | 136 | "# Computed how many people click\n", |
137 | 137 | "clicks = x <= 0.5\n", |
138 | | - "n_clicks = sum(pop)\n", |
| 138 | + "n_clicks = sum(clicks)\n", |
139 | 139 | "f\"Number of clicks = {n_clicks}\"" |
140 | 140 | ] |
141 | 141 | }, |
|
148 | 148 | }, |
149 | 149 | { |
150 | 150 | "cell_type": "code", |
151 | | - "execution_count": 7, |
| 151 | + "execution_count": 4, |
152 | 152 | "metadata": {}, |
153 | 153 | "outputs": [ |
154 | 154 | { |
155 | 155 | "data": { |
156 | 156 | "text/plain": [ |
157 | | - "'Proportion who clicked = 0.498'" |
| 157 | + "'Proportion who clicked = 0.477'" |
158 | 158 | ] |
159 | 159 | }, |
160 | | - "execution_count": 7, |
| 160 | + "execution_count": 4, |
161 | 161 | "metadata": {}, |
162 | 162 | "output_type": "execute_result" |
163 | 163 | } |
|
207 | 207 | }, |
208 | 208 | { |
209 | 209 | "cell_type": "code", |
210 | | - "execution_count": 9, |
| 210 | + "execution_count": 5, |
211 | 211 | "metadata": {}, |
212 | 212 | "outputs": [ |
213 | 213 | { |
214 | 214 | "name": "stdout", |
215 | 215 | "output_type": "stream", |
216 | 216 | "text": [ |
217 | | - "Number of clicks = 688\n", |
218 | | - "Proportion who clicked = 0.688\n" |
| 217 | + "Number of clicks = 676\n", |
| 218 | + "Proportion who clicked = 0.676\n" |
219 | 219 | ] |
220 | 220 | } |
221 | 221 | ], |
|
367 | 367 | { |
368 | 368 | "data": { |
369 | 369 | "text/plain": [ |
370 | | - "0.8508064516129032" |
| 370 | + "0.8514056224899599" |
371 | 371 | ] |
372 | 372 | }, |
373 | 373 | "execution_count": 8, |
|
404 | 404 | { |
405 | 405 | "data": { |
406 | 406 | "text/plain": [ |
407 | | - "0.8519" |
| 407 | + "0.852" |
408 | 408 | ] |
409 | 409 | }, |
410 | 410 | "execution_count": 9, |
|
611 | 611 | "cell_type": "markdown", |
612 | 612 | "metadata": {}, |
613 | 613 | "source": [ |
614 | | - "**Note:** you may have noticed that the _binomial distribution_ can take on only a finite number of values, whereas the _uniform distribution_ above can take on any number between $0$ and $1$. These are different enough cases to warrant special mention of this & two different names: the former is called a _probability mass function_ (PMF) and the latter a _probability distribution function_ (PDF). Time permitting, we may discuss some of the subtleties here. If not, all good texts will cover this. I like (Sivia & Skilling, 2006), among many others.\n", |
615 | | - "\n", |
616 | | - "**HBA: should this note ^ have come earlier?** " |
| 614 | + "**Note:** you may have noticed that the _binomial distribution_ can take on only a finite number of values, whereas the _uniform distribution_ above can take on any number between $0$ and $1$. These are different enough cases to warrant special mention of this & two different names: the former is called a _probability mass function_ (PMF) and the latter a _probability distribution function_ (PDF). Time permitting, we may discuss some of the subtleties here. If not, all good texts will cover this. I like (Sivia & Skilling, 2006), among many others.\n" |
617 | 615 | ] |
618 | 616 | }, |
619 | 617 | { |
|
637 | 635 | "We have already encountered joint probabilities above, perhaps without knowing it: $P(A,B)$ is the probability two events $A$ and $B$ _both_ occurring.\n", |
638 | 636 | "* For example, getting two heads in a row.\n", |
639 | 637 | "\n", |
640 | | - "If $A$ and $B$ are independent, then $P(A,B)=P(A)P(B)$ but be warned: this is not always (or often) the case." |
| 638 | + "If $A$ and $B$ are independent, then $P(A,B)=P(A)P(B)$ but be warned: this is not always (or often) the case.\n", |
| 639 | + "\n", |
| 640 | + "One way to think of this is considering \"AND\" as multiplication: the probability of A **and** B is the probability of A **multiplied** by the probability of B." |
641 | 641 | ] |
642 | 642 | }, |
643 | 643 | { |
|
748 | 748 | { |
749 | 749 | "data": { |
750 | 750 | "text/plain": [ |
751 | | - "0.7238716181061394" |
| 751 | + "0.724891534007516" |
752 | 752 | ] |
753 | 753 | }, |
754 | 754 | "execution_count": 17, |
|
778 | 778 | { |
779 | 779 | "data": { |
780 | 780 | "text/plain": [ |
781 | | - "0.722899474" |
| 781 | + "0.7238861042000001" |
782 | 782 | ] |
783 | 783 | }, |
784 | 784 | "execution_count": 18, |
|
809 | 809 | { |
810 | 810 | "data": { |
811 | 811 | "text/plain": [ |
812 | | - "0.72392" |
| 812 | + "0.72493" |
813 | 813 | ] |
814 | 814 | }, |
815 | 815 | "execution_count": 19, |
|
871 | 871 | { |
872 | 872 | "data": { |
873 | 873 | "text/plain": [ |
874 | | - "0.8508064516129032" |
| 874 | + "0.8514056224899599" |
875 | 875 | ] |
876 | 876 | }, |
877 | 877 | "execution_count": 20, |
|
949 | 949 | "**Homework exercise for the avid learner:** verify the above relationship using simulation/resampling techniques in one of the cases above." |
950 | 950 | ] |
951 | 951 | }, |
952 | | - { |
953 | | - "cell_type": "markdown", |
954 | | - "metadata": {}, |
955 | | - "source": [ |
956 | | - "**TO-DO HBA: include Venn Diagram? Include mention earlier of probability AND being multiplication.**" |
957 | | - ] |
958 | | - }, |
959 | 952 | { |
960 | 953 | "cell_type": "markdown", |
961 | 954 | "metadata": {}, |
|
1014 | 1007 | { |
1015 | 1008 | "data": { |
1016 | 1009 | "text/plain": [ |
1017 | | - "array([0.30026281])" |
| 1010 | + "array([0.32798931])" |
1018 | 1011 | ] |
1019 | 1012 | }, |
1020 | 1013 | "execution_count": 25, |
|
1137 | 1130 | "name": "python", |
1138 | 1131 | "nbconvert_exporter": "python", |
1139 | 1132 | "pygments_lexer": "ipython3", |
1140 | | - "version": "3.6.1" |
| 1133 | + "version": "3.6.6" |
1141 | 1134 | } |
1142 | 1135 | }, |
1143 | 1136 | "nbformat": 4, |
|
0 commit comments