|
6 | 6 | .. raw:: html |
7 | 7 |
|
8 | 8 | <h1>scikit-learn: machine learning in Python</h1> |
| 9 | + <style type="text/css"> |
| 10 | + p { |
| 11 | + margin: 7px 0 7px 0 ; |
| 12 | + } |
| 13 | + span.linkdescr a { |
| 14 | + color: #3E4349 ; |
| 15 | + } |
| 16 | + </style> |
9 | 17 |
|
10 | 18 | .. only:: html |
11 | 19 |
|
12 | | - .. |banner1| image:: auto_examples/cluster/images/plot_affinity_propagation_1.png |
| 20 | + .. |banner1| image:: auto_examples/svm/images/plot_oneclass_1.png |
13 | 21 | :height: 150 |
14 | | - :target: auto_examples/cluster/plot_affinity_propagation.html |
| 22 | + :target: auto_examples/svm/plot_oneclass.html |
15 | 23 |
|
16 | | - .. |banner2| image:: auto_examples/gaussian_process/images/plot_gp_regression_1.png |
| 24 | + .. |banner2| image:: auto_examples/cluster/images/plot_ward_structured_vs_unstructured_2.png |
17 | 25 | :height: 150 |
18 | | - :target: auto_examples/gaussian_process/plot_gp_regression.html |
| 26 | + :target: auto_examples/cluster/plot_ward_structured_vs_unstructured.html |
19 | 27 |
|
20 | | - .. |banner3| image:: auto_examples/svm/images/plot_oneclass_1.png |
| 28 | + .. |banner3| image:: auto_examples/gaussian_process/images/plot_gp_regression_1.png |
21 | 29 | :height: 150 |
22 | | - :target: auto_examples/svm/plot_oneclass.html |
| 30 | + :target: auto_examples/gaussian_process/plot_gp_regression.html |
23 | 31 |
|
24 | 32 | .. |banner4| image:: auto_examples/cluster/images/plot_lena_ward_segmentation_1.png |
25 | 33 | :height: 150 |
26 | 34 | :target: auto_examples/cluster/plot_lena_ward_segmentation.html |
27 | 35 |
|
28 | 36 | .. |center-div| raw:: html |
29 | 37 |
|
30 | | - <div style="text-align: center; margin: 0px 0 -5px 0;"> |
| 38 | + <div style="text-align: center; margin: -7px 0 -13px 0;"> |
31 | 39 |
|
32 | 40 | .. |end-div| raw:: html |
33 | 41 |
|
|
44 | 52 | packages (`numpy <http://numpy.scipy.org>`_, `scipy |
45 | 53 | <http://www.scipy.org>`_, `matplotlib |
46 | 54 | <http://matplotlib.sourceforge.net/>`_). |
47 | | - |
48 | 55 | It aims to provide simple and efficient solutions to learning |
49 | 56 | problems that are accessible to everybody and reusable in various |
50 | 57 | contexts: **machine-learning as a versatile tool for science and |
51 | 58 | engineering**. |
52 | 59 |
|
53 | 60 |
|
| 61 | +.. raw:: html |
54 | 62 |
|
55 | | -:Features: |
56 | | - * **Solid**: :ref:`supervised-learning`: :ref:`svm`, :ref:`linear_model`. |
57 | | - |
58 | | - * **Work in progress**: :ref:`unsupervised-learning`: |
59 | | - :ref:`clustering`, :ref:`mixture`, :ref:`Manifold learning <manifold>`, :ref:`ICA |
60 | | - <ICA>`, :ref:`gaussian_process`, :ref:`matrix factorization <decompositions>` |
61 | | - |
62 | | - * **Planned**: Gaussian graphical models |
63 | | - |
64 | | -:License: |
65 | | - Open source, commercially usable: **BSD license** (3 clause) |
66 | | - |
| 63 | + <table class="contentstable" style="width: 100% ; margin-top: -8px"> |
| 64 | + <tr valign="top"><td width="28%"> |
| 65 | + <p class="biglink"><a class="biglink" href="supervised_learning.html"> |
| 66 | + Supervised learning</a><br/> |
| 67 | + <span class="linkdescr"> |
| 68 | + <a href="modules/svm.html">Support Vector Machines</a>, |
| 69 | + <a href="modules/linear_model.html">linear models</a>, |
| 70 | + <a href="modules/naive_bayes.html">naives Bayes</a>, |
| 71 | + <a href="modules/gaussian_process.html">Gaussian process</a>... |
| 72 | + </span></p> |
| 73 | + </td><td align="center" width="32%"> |
| 74 | + <p class="biglink"><a class="biglink" href="unsupervised_learning.html"> |
| 75 | + Unsupervised learning</a><br/> |
| 76 | + <span class="linkdescr"> |
| 77 | + <a href="modules/clustering.html">Clustering</a>, |
| 78 | + <a href="modules/mixture.html">Gaussian mixture models</a>, |
| 79 | + <a href="modules/manifold.html">manifold learning</a>, |
| 80 | + <a href="modules/decomposition.html">matrix factorization</a>, |
| 81 | + <a href="modules/covariance.html">covariance</a>... |
| 82 | + </span></p> |
| 83 | + </td><td align="right" width="30%"> |
| 84 | + <p class="biglink"><a class="biglink" href="index.html#user-guide"> |
| 85 | + And much more</a><br/> |
| 86 | + <span class="linkdescr"> |
| 87 | + <a href="model_selection.html">Model selection</a>, |
| 88 | + <a href="datasets/index.html">datasets</a>, |
| 89 | + <a href="modules/feature_extraction.html">feature extraction...</a> |
| 90 | + <strong>See below</strong>.</span></p> |
| 91 | + </td></tr> |
| 92 | + </table> |
| 93 | + |
| 94 | +**License:** Open source, commercially usable: **BSD license** (3 clause) |
67 | 95 |
|
68 | 96 | .. include:: includes/big_toc_css.rst |
69 | 97 |
|
70 | | -.. note:: This document describes scikit-learn |release|. For other |
71 | | - versions and printable format, see :ref:`documentation_resources`. |
| 98 | +This document describes scikit-learn |release|. For other versions and |
| 99 | +printable format, see :ref:`documentation_resources`. |
72 | 100 |
|
73 | 101 | User Guide |
74 | 102 | ========== |
|
0 commit comments