Skip to content

Commit 57510fd

Browse files
committed
Fix some documentation rendering issues
1 parent 80c3051 commit 57510fd

File tree

4 files changed

+35
-26
lines changed

4 files changed

+35
-26
lines changed

docs/changes.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,8 @@
11
# Recent Changes
22

3-
### Aug 1, 2020
3+
### Aug 5, 2020
44
Universal feature extraction, new models, new weights, new test sets.
5+
56
* All models support the `features_only=True` argument for `create_model` call to return a network that extracts features from the deepest layer at each stride.
67
* New models
78
* CSPResNet, CSPResNeXt, CSPDarkNet, DarkNet
@@ -14,6 +15,8 @@ Universal feature extraction, new models, new weights, new test sets.
1415
* DPN68b - 79.2 top-1
1516
* EfficientNet-Lite0 (non-TF ver) - 75.5 (submitted by @hal-314)
1617
* Add 'real' labels for ImageNet and ImageNet-Renditions test set, see [`results/README.md`](results/README.md)
18+
* Train script and loader/transform tweaks to punch through more aug arguments
19+
* README and documentation overhaul. See initial (WIP) documentation at https://rwightman.github.io/pytorch-image-models/
1720

1821
### June 11, 2020
1922
Bunch of changes:

docs/models.md

Lines changed: 28 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,7 @@
33
The model architectures included come from a wide variety of sources. Sources, including papers, original impl ("reference code") that I rewrote / adapted, and PyTorch impl that I leveraged directly ("code") are listed below.
44

55
Most included models have pretrained weights. The weights are either:
6+
67
1. from their original sources
78
2. ported by myself from their original impl in a different framework (e.g. Tensorflow models)
89
3. trained from scratch using the included training script
@@ -55,16 +56,17 @@ The validation results for the pretrained weights can be found [here](results.md
5556
* Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
5657

5758
## EfficientNet [[efficientnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/efficientnet.py)]
58-
* Papers
59-
* EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
60-
* EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
61-
* EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
62-
* EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
63-
* MixNet - https://arxiv.org/abs/1907.09595
64-
* MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
65-
* MobileNet-V2 - https://arxiv.org/abs/1801.04381
66-
* FBNet-C - https://arxiv.org/abs/1812.03443
67-
* Single-Path NAS - https://arxiv.org/abs/1904.02877
59+
60+
* Papers:
61+
* EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
62+
* EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
63+
* EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
64+
* EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
65+
* MixNet - https://arxiv.org/abs/1907.09595
66+
* MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
67+
* MobileNet-V2 - https://arxiv.org/abs/1801.04381
68+
* FBNet-C - https://arxiv.org/abs/1812.03443
69+
* Single-Path NAS - https://arxiv.org/abs/1904.02877
6870
* My PyTorch code: https://github.com/rwightman/gen-efficientnet-pytorch
6971
* Reference code: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
7072

@@ -77,27 +79,28 @@ The validation results for the pretrained weights can be found [here](results.md
7779
* Reference code: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py
7880

7981
## ResNet, ResNeXt [[resnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnet.py)]
82+
8083
* ResNet (V1B)
81-
* Paper: `Deep Residual Learning for Image Recognition` - https://arxiv.org/abs/1512.03385
82-
* Code: https://github.com/pytorch/vision/tree/master/torchvision/models
84+
* Paper: `Deep Residual Learning for Image Recognition` - https://arxiv.org/abs/1512.03385
85+
* Code: https://github.com/pytorch/vision/tree/master/torchvision/models
8386
* ResNeXt
84-
* Paper: `Aggregated Residual Transformations for Deep Neural Networks` - https://arxiv.org/abs/1611.05431
85-
* Code: https://github.com/pytorch/vision/tree/master/torchvision/models
87+
* Paper: `Aggregated Residual Transformations for Deep Neural Networks` - https://arxiv.org/abs/1611.05431
88+
* Code: https://github.com/pytorch/vision/tree/master/torchvision/models
8689
* 'Bag of Tricks' / Gluon C, D, E, S ResNet variants
87-
* Paper: `Bag of Tricks for Image Classification with CNNs` - https://arxiv.org/abs/1812.01187
88-
* Code: https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/resnetv1b.py
90+
* Paper: `Bag of Tricks for Image Classification with CNNs` - https://arxiv.org/abs/1812.01187
91+
* Code: https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/resnetv1b.py
8992
* Instagram pretrained / ImageNet tuned ResNeXt101
90-
* Paper: `Exploring the Limits of Weakly Supervised Pretraining` - https://arxiv.org/abs/1805.00932
91-
* Weights: https://pytorch.org/hub/facebookresearch_WSL-Images_resnext (NOTE: CC BY-NC 4.0 License, NOT commercial friendly)
93+
* Paper: `Exploring the Limits of Weakly Supervised Pretraining` - https://arxiv.org/abs/1805.00932
94+
* Weights: https://pytorch.org/hub/facebookresearch_WSL-Images_resnext (NOTE: CC BY-NC 4.0 License, NOT commercial friendly)
9295
* Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet and ResNeXts
93-
* Paper: `Billion-scale semi-supervised learning for image classification` - https://arxiv.org/abs/1905.00546
94-
* Weights: https://github.com/facebookresearch/semi-supervised-ImageNet1K-models (NOTE: CC BY-NC 4.0 License, NOT commercial friendly)
96+
* Paper: `Billion-scale semi-supervised learning for image classification` - https://arxiv.org/abs/1905.00546
97+
* Weights: https://github.com/facebookresearch/semi-supervised-ImageNet1K-models (NOTE: CC BY-NC 4.0 License, NOT commercial friendly)
9598
* Squeeze-and-Excitation Networks
96-
* Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507
97-
* Code: Added to ResNet base, this is current version going forward, old `senet.py` is being deprecated
99+
* Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507
100+
* Code: Added to ResNet base, this is current version going forward, old `senet.py` is being deprecated
98101
* ECAResNet (ECA-Net)
99-
* Paper: `ECA-Net: Efficient Channel Attention for Deep CNN` - https://arxiv.org/abs/1910.03151v4
100-
* Code: Added to ResNet base, ECA module contributed by @VRandme, reference https://github.com/BangguWu/ECANet
102+
* Paper: `ECA-Net: Efficient Channel Attention for Deep CNN` - https://arxiv.org/abs/1910.03151v4
103+
* Code: Added to ResNet base, ECA module contributed by @VRandme, reference https://github.com/BangguWu/ECANet
101104

102105
## Res2Net [[res2net.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/res2net.py)]
103106
* Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169
@@ -121,6 +124,7 @@ The validation results for the pretrained weights can be found [here](results.md
121124

122125
## Squeeze-and-Excitation Networks [[senet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/senet.py)]
123126
NOTE: I am deprecating this version of the networks, the new ones are part of `resnet.py`
127+
124128
* Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507
125129
* Code: https://github.com/Cadene/pretrained-models.pytorch
126130

mkdocs.yml

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -39,3 +39,4 @@ markdown_extensions:
3939
- pymdownx.tasklist:
4040
custom_checkbox: true
4141
- pymdownx.tilde
42+
- mdx_truly_sane_lists

requirements-docs.txt

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,3 @@
11
mkdocs==1.1.2
2-
mkdocs-material==5.4.0
2+
mkdocs-material==5.4.0
3+
mdx_truly_sane_lists

0 commit comments

Comments
 (0)