@@ -225,13 +225,13 @@ observations, it is often faster than :class:`LassoCV`.
225225
226226.. |lasso_cv_1 | image :: ../auto_examples/linear_model/images/plot_lasso_model_selection_2.png
227227 :target: ../auto_examples/linear_model/plot_lasso_model_selection.html
228- :scale: 50 %
228+ :scale: 48 %
229229
230230.. |lasso_cv_2 | image :: ../auto_examples/linear_model/images/plot_lasso_model_selection_3.png
231231 :target: ../auto_examples/linear_model/plot_lasso_model_selection.html
232- :scale: 50 %
232+ :scale: 48 %
233233
234- |lasso_cv_1 | |lasso_cv_2 |
234+ .. centered :: |lasso_cv_1| |lasso_cv_2|
235235
236236
237237Information-criteria based model selection
@@ -291,10 +291,34 @@ and `rho` by cross-validation.
291291Multi-task Lasso
292292================
293293
294- The :class: `MultiTaskLasso ` is a linear model that estimates sparse coefficients
295- for multiple regression problems jointly. The constraint is that the selected
294+ The :class: `MultiTaskLasso ` is a linear model that estimates sparse
295+ coefficients for multiple regression problems jointly: `y ` is a 2D array,
296+ of shape (n_samples, n_tasks). The constraint is that the selected
296297features are the same for all the regression problems, also called tasks.
297298
299+ The following figure compares the location of the non-zeros in W obtained
300+ with a simple Lasso or a MultiTaskLasso. The Lasso estimates yields
301+ scattered non-zeros while the non-zeros of the MultiTaskLasso are full
302+ columns.
303+
304+ .. |multi_task_lasso_1 | image :: ../auto_examples/linear_model/images/plot_multi_task_lasso_support_1.png
305+ :target: ../auto_examples/linear_model/plot_multi_task_lasso_support.html
306+ :scale: 48%
307+
308+ .. |multi_task_lasso_2 | image :: ../auto_examples/linear_model/images/plot_multi_task_lasso_support_2.png
309+ :target: ../auto_examples/linear_model/plot_multi_task_lasso_support.html
310+ :scale: 48%
311+
312+ .. centered :: |multi_task_lasso_1| |multi_task_lasso_2|
313+
314+ .. centered :: Fitting a time-series model, imposing that any active feature be active at all times.
315+
316+ .. topic :: Examples:
317+
318+ * :ref: `example_linear_model_plot_multi_task_lasso_support.py `
319+
320+
321+
298322Mathematically, it consists of a linear model trained with a mixed
299323:math: `\ell _1 ` :math: `\ell _2 ` prior as regularizer.
300324The objective function to minimize is:
@@ -309,21 +333,6 @@ where;
309333The implementation in the class :class: `MultiTaskLasso ` uses coordinate descent as
310334the algorithm to fit the coefficients.
311335
312- The following figure compares the location of the non-zeros in W obtained with
313- a simple Lasso or a MultiTaskLasso. The Lasso estimates yields scattered non-zeros
314- while the non-zeros of the MultiTaskLasso are full columns.
315-
316- .. |multi_task_lasso_1 | image :: ../auto_examples/linear_model/images/plot_multi_task_lasso_support_1.png
317- :target: ../auto_examples/linear_model/plot_multi_task_lasso_support.html
318- :scale: 50%
319-
320- |multi_task_lasso_1 |
321-
322- .. topic :: Examples:
323-
324- * :ref: `example_linear_model_plot_multi_task_lasso_support.py `
325-
326-
327336.. _least_angle_regression :
328337
329338Least Angle Regression
0 commit comments