Description
Name and Version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4080 SUPER, compute capability 8.9, VMM: yes
load_backend: loaded CUDA backend from C:\Users\Jayden\Downloads\Compressed\llama-b5466-bin-win-cuda-12.4-x64\ggml-cuda.dll
load_backend: loaded RPC backend from C:\Users\Jayden\Downloads\Compressed\llama-b5466-bin-win-cuda-12.4-x64\ggml-rpc.dll
load_backend: loaded CPU backend from C:\Users\Jayden\Downloads\Compressed\llama-b5466-bin-win-cuda-12.4-x64\ggml-cpu-alderlake.dll
version: 5466 (9ecf3e6)
built with clang version 18.1.8 for x86_64-pc-windows-msvc
Operating systems
Windows
GGML backends
CUDA
Hardware
CPU: Intel(R) Core(TM) 17-14700KF
RAM: 64.0GB
GPU: NVIDIA GeForce RTX 4080 SUPER
Models
https://huggingface.co/Qwen/Qwen3-30B-A3B-GGUF
Qwen3-30B-A3B-Q4_K_M.gguf
Problem description & steps to reproduce
🧾 Problem Description
When running the Qwen3-30B-A3B-Q4_K_M.gguf MoE-based model using llama-server.exe
from the llama-b5466-bin-win-cuda-12.4-x64 build on an NVIDIA RTX 4080 SUPER (Ampere architecture), the following issues occur:
- The model successfully loads onto the GPU (
CUDA0
) and allocates memory. - However, no actual CUDA kernel computation is triggered, leading to:
- Extremely slow inference
- Unstable or incomplete generation output
- No visible CUDA-related activity in logs (e.g., no
ggml_cuda_assign_buffers
,kernel launched
, etc.)
In contrast, the same model runs correctly using the llama-b5333
build, with proper GPU acceleration and stable output.
This suggests a regression or compatibility issue in the newer b5466
build, especially with how it handles MoE models or GPU offloading logic.
📋 Steps to Reproduce
✅ Affected Version
llama-b5466-bin-win-cuda-12.4-x64
🔧 Command Used
llama-server.exe --model "C:\Users\Jayden\Downloads\Qwen3-30B-A3B-Q4_K_M.gguf" --n-gpu-layers 30 --threads 16 --repeat-penalty 1.3 --temp 0.7 --mirostat 2 --mlock
🧪 Reproduction Steps
- Download and extract the
llama-b5466-bin-win-cuda-12.4-x64
build. - Place the
Qwen3-30B-A3B-Q4_K_M.gguf
model file in a known location. - Run the above command in CMD/PowerShell.
- Wait for the model to load (you'll see logs indicating successful loading to CUDA).
- Send a chat completion request via the API endpoint:
With body:
POST http://127.0.0.1:8080/v1/chat/completions
{ "model": "Qwen3-30B-A3B", "messages": [{"role": "user", "content": "Hello"}] }
- Observe:
- Very slow response time or timeout
- Incomplete or unstable output
- No evidence of CUDA kernel usage in logs
✅ Control Test (Working Version)
Repeat the exact steps above using llama-b5333
. You will observe:
- Fast inference
- Coherent output
- Logs clearly indicate CUDA kernel execution
⚠️ Observed Behavior in b5466
Despite seeing these log entries:
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4080 SUPER) - 15035 MiB free
load_tensors: offloaded 30/49 layers to GPU
There is no further CUDA activity during inference.
No ggml_cuda_assign_buffers
or kernel launched
messages are shown.
🛠 Potential Causes
- Regression in how MoE layers are offloaded or executed in
b5466
. - Changes in graph execution logic that prevent CUDA kernels from being used.
- Incomplete or incorrect support for MoE models in this particular build.
- Possible missing or broken CUDA kernel bindings for certain ops used by MoE models.
✅ Suggested Fixes / Investigations
- Add better detection of MoE model structures
- Ensure CUDA kernels are properly triggered for MoE layers
- Consider adding a warning when certain features are not supported in current builds
- Compare source code diffs between
b5333
andb5466
focusing on:src/ggml-cuda.cu
src/llama.cpp
(offloading logic)- MoE-specific handling in
llm_load_tensors()
First Bad Commit
No response
Relevant log output
go.bat
@echo off
llama-server.exe --model "C:\Users\Jayden\Downloads\Qwen3-30B-A3B-Q4_K_M.gguf" --n-gpu-layers 30 --threads 16 --repeat-penalty 1.3 --temp 0.7 --mirostat 2 --mlock
C:\Users\Jayden\Downloads\Compressed\llama-b5466-bin-win-cuda-12.4-x64>go
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4080 SUPER, compute capability 8.9, VMM: yes
load_backend: loaded CUDA backend from C:\Users\Jayden\Downloads\Compressed\llama-b5466-bin-win-cuda-12.4-x64\ggml-cuda.dll
load_backend: loaded RPC backend from C:\Users\Jayden\Downloads\Compressed\llama-b5466-bin-win-cuda-12.4-x64\ggml-rpc.dll
load_backend: loaded CPU backend from C:\Users\Jayden\Downloads\Compressed\llama-b5466-bin-win-cuda-12.4-x64\ggml-cpu-alderlake.dll
build: 5466 (9ecf3e66) with clang version 18.1.8 for x86_64-pc-windows-msvc
system info: n_threads = 16, n_threads_batch = 16, total_threads = 28
system_info: n_threads = 16 (n_threads_batch = 16) / 28 | CUDA : ARCHS = 500,610,700,750,800,860,890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | AARCH64_REPACK = 1 |
main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 27
main: loading model
srv load_model: loading model 'C:\Users\Jayden\Downloads\Qwen3-30B-A3B-Q4_K_M.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4080 SUPER) - 15035 MiB free
llama_model_loader: loaded meta data with 31 key-value pairs and 579 tensors from C:\Users\Jayden\Downloads\Qwen3-30B-A3B-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen3moe
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen3 30B Gptq Fp16
llama_model_loader: - kv 3: general.finetune str = gptq
llama_model_loader: - kv 4: general.basename str = Qwen3
llama_model_loader: - kv 5: general.size_label str = 30B
llama_model_loader: - kv 6: qwen3moe.block_count u32 = 48
llama_model_loader: - kv 7: qwen3moe.context_length u32 = 40960
llama_model_loader: - kv 8: qwen3moe.embedding_length u32 = 2048
llama_model_loader: - kv 9: qwen3moe.feed_forward_length u32 = 6144
llama_model_loader: - kv 10: qwen3moe.attention.head_count u32 = 32
llama_model_loader: - kv 11: qwen3moe.attention.head_count_kv u32 = 4
llama_model_loader: - kv 12: qwen3moe.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 13: qwen3moe.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 14: qwen3moe.expert_used_count u32 = 8
llama_model_loader: - kv 15: qwen3moe.attention.key_length u32 = 128
llama_model_loader: - kv 16: qwen3moe.attention.value_length u32 = 128
llama_model_loader: - kv 17: qwen3moe.expert_count u32 = 128
llama_model_loader: - kv 18: qwen3moe.expert_feed_forward_length u32 = 768
llama_model_loader: - kv 19: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 20: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 21: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 23: tokenizer.ggml.merges arr[str,151387] = ["? ?", "?? ??", "i n", "? t",...
llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 25: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 26: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 28: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 29: general.quantization_version u32 = 2
llama_model_loader: - kv 30: general.file_type u32 = 15
llama_model_loader: - type f32: 241 tensors
llama_model_loader: - type q4_K: 289 tensors
llama_model_loader: - type q6_K: 49 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 17.28 GiB (4.86 BPW)
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch = qwen3moe
print_info: vocab_only = 0
print_info: n_ctx_train = 40960
print_info: n_embd = 2048
print_info: n_layer = 48
print_info: n_head = 32
print_info: n_head_kv = 4
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 8
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 6144
print_info: n_expert = 128
print_info: n_expert_used = 8
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 40960
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 30B.A3B
print_info: model params = 30.53 B
print_info: general.name = Qwen3 30B Gptq Fp16
print_info: n_ff_exp = 768
print_info: vocab type = BPE
print_info: n_vocab = 151936
print_info: n_merges = 151387
print_info: BOS token = 151643 '<|endoftext|>'
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151643 '<|endoftext|>'
print_info: LF token = 198 '?'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 30 repeating layers to GPU
load_tensors: offloaded 30/49 layers to GPU
load_tensors: CUDA0 model buffer size = 10750.86 MiB
load_tensors: CPU_Mapped model buffer size = 6940.48 MiB
...................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (40960) -- the full capacity of the model will not be utilized
llama_context: CPU output buffer size = 0.58 MiB
llama_kv_cache_unified: CUDA0 KV buffer size = 240.00 MiB
llama_kv_cache_unified: CPU KV buffer size = 144.00 MiB
llama_kv_cache_unified: size = 384.00 MiB ( 4096 cells, 48 layers, 1 seqs), K (f16): 192.00 MiB, V (f16): 192.00 MiB
llama_context: CUDA0 compute buffer size = 544.18 MiB
llama_context: CUDA_Host compute buffer size = 12.01 MiB
llama_context: graph nodes = 3222
llama_context: graph splits = 256 (with bs=512), 39 (with bs=1)
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 4096
main: model loaded
main: chat template, chat_template: {%- if tools %}
{{- '<|im_start|>system\n' }}
{%- if messages[0].role == 'system' %}
{{- messages[0].content + '\n\n' }}
{%- endif %}
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
{%- for tool in tools %}
{{- "\n" }}
{{- tool | tojson }}
{%- endfor %}
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
{%- else %}
{%- if messages[0].role == 'system' %}
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
{%- for index in range(ns.last_query_index, -1, -1) %}
{%- set message = messages[index] %}
{%- if ns.multi_step_tool and message.role == "user" and not('<tool_response>' in message.content and '</tool_response>' in message.content) %}
{%- set ns.multi_step_tool = false %}
{%- set ns.last_query_index = index %}
{%- endif %}
{%- endfor %}
{%- for message in messages %}
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
{%- elif message.role == "assistant" %}
{%- set content = message.content %}
{%- set reasoning_content = '' %}
{%- if message.reasoning_content is defined and message.reasoning_content is not none %}
{%- set reasoning_content = message.reasoning_content %}
{%- else %}
{%- if '</think>' in message.content %}
{%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
{%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
{%- endif %}
{%- endif %}
{%- if loop.index0 > ns.last_query_index %}
{%- if loop.last or (not loop.last and reasoning_content) %}
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
{%- else %}
{{- '<|im_start|>' + message.role + '\n' + content }}
{%- endif %}
{%- else %}
{{- '<|im_start|>' + message.role + '\n' + content }}
{%- endif %}
{%- if message.tool_calls %}
{%- for tool_call in message.tool_calls %}
{%- if (loop.first and content) or (not loop.first) %}
{{- '\n' }}
{%- endif %}
{%- if tool_call.function %}
{%- set tool_call = tool_call.function %}
{%- endif %}
{{- '<tool_call>\n{"name": "' }}
{{- tool_call.name }}
{{- '", "arguments": ' }}
{%- if tool_call.arguments is string %}
{{- tool_call.arguments }}
{%- else %}
{{- tool_call.arguments | tojson }}
{%- endif %}
{{- '}\n</tool_call>' }}
{%- endfor %}
{%- endif %}
{{- '<|im_end|>\n' }}
{%- elif message.role == "tool" %}
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
{{- '<|im_start|>user' }}
{%- endif %}
{{- '\n<tool_response>\n' }}
{{- message.content }}
{{- '\n</tool_response>' }}
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
{{- '<|im_end|>\n' }}
{%- endif %}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|im_start|>assistant\n' }}
{%- if enable_thinking is defined and enable_thinking is false %}
{{- '<think>\n\n</think>\n\n' }}
{%- endif %}
{%- endif %}, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://127.0.0.1:8080 - starting the main loop
srv update_slots: all slots are idle
srv params_from_: Chat format: Content-only
slot launch_slot_: id 0 | task 0 | processing task
slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 4096, n_keep = 0, n_prompt_tokens = 383
slot update_slots: id 0 | task 0 | kv cache rm [0, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 383, n_tokens = 383, progress = 1.000000
slot update_slots: id 0 | task 0 | prompt done, n_past = 383, n_tokens = 383
srv cancel_tasks: cancel task, id_task = 0
srv log_server_r: request: POST /v1/chat/completions 127.0.0.1 200
slot release: id 0 | task 0 | stop processing: n_past = 418, truncated = 0
srv update_slots: all slots are idle
srv operator(): operator(): cleaning up before exit...