Skip to content

Misc. bug: Failure to allocate buffer with ROCm 6.4 #14178

Open
@gremlinofthemysticarts

Description

@gremlinofthemysticarts

Name and Version

root@llama-0:/app# ./llama-server --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 ROCm devices:
Device 0: Radeon RX 7900 XT, gfx1100 (0x1100), VMM: no, Wave Size: 32
load_backend: loaded ROCm backend from /app/libggml-hip.so
load_backend: loaded CPU backend from /app/libggml-cpu-icelake.so
version: 5662 (fb85a28)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu

Operating systems

Linux

Which llama.cpp modules do you know to be affected?

libllama (core library), llama-cli, llama-server

Command line

/app/llama-server --port ${PORT}
      -m /data/Qwen3-30B-A3B-UD-Q4_K_XL.gguf
      -ngl 99 -t 6
      --cache-type-k q8_0
      --cache-type-v q8_0
      --ctx-size 32768
      --flash-attn

Problem description & steps to reproduce

  • Build llama.cpp with ROCm 6.4
  • Attempt to load large model (e.g Qwen3-30B-A3B-UD-Q4_K_XL.gguf)
  • llama.cpp reports it is unable to allocate buffer

First Bad Commit

No response

Relevant log output

# During build
In file included from /app/ggml/src/ggml-cuda/acc.cu:1:
In file included from /app/ggml/src/ggml-cuda/acc.cuh:1:
/app/ggml/src/ggml-cuda/common.cuh:266:12: warning: macro '__AMDGCN_WAVEFRONT_SIZE' has been marked as deprecated: compile-time-constant access to the wavefront size will be removed in a future release [-Wdeprecated-pragma]
  266 |     return __AMDGCN_WAVEFRONT_SIZE;
      |            ^
<built-in>:891:139: note: macro marked 'deprecated' here
  891 | #pragma clang deprecated(__AMDGCN_WAVEFRONT_SIZE, "compile-time-constant access to the wavefront size will be removed in a future release")
      |                                                                                                                                           ^

# Loading model (qwen3:30b, Q4)
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 ROCm devices:
  Device 0: Radeon RX 7900 XT, gfx1100 (0x1100), VMM: no, Wave Size: 32
load_backend: loaded ROCm backend from /app/libggml-hip.so
load_backend: loaded CPU backend from /app/libggml-cpu-icelake.so
build: 5662 (fb85a288) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
system info: n_threads = 6, n_threads_batch = 6, total_threads = 8

system_info: n_threads = 6 (n_threads_batch = 6) / 8 | ROCm : NO_VMM = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 | 

main: binding port with default address family
main: HTTP server is listening, hostname: 0.0.0.0, port: 8080, http threads: 7
main: loading model
srv    load_model: loading model '/data/Qwen3-30B-A3B-UD-Q4_K_XL.gguf'
llama_model_load_from_file_impl: using device ROCm0 (Radeon RX 7900 XT) - 20420 MiB free
llama_model_loader: loaded meta data with 35 key-value pairs and 579 tensors from /data/Qwen3-30B-A3B-UD-Q4_K_XL.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3moe
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3-30B-A3B
llama_model_loader: - kv   3:                           general.basename str              = Qwen3-30B-A3B
llama_model_loader: - kv   4:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   5:                         general.size_label str              = 30B-A3B
llama_model_loader: - kv   6:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv   7:                       qwen3moe.block_count u32              = 48
llama_model_loader: - kv   8:                    qwen3moe.context_length u32              = 40960
llama_model_loader: - kv   9:                  qwen3moe.embedding_length u32              = 2048
llama_model_loader: - kv  10:               qwen3moe.feed_forward_length u32              = 6144
llama_model_loader: - kv  11:              qwen3moe.attention.head_count u32              = 32
llama_model_loader: - kv  12:           qwen3moe.attention.head_count_kv u32              = 4
llama_model_loader: - kv  13:                    qwen3moe.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  14:  qwen3moe.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  15:                 qwen3moe.expert_used_count u32              = 8
llama_model_loader: - kv  16:              qwen3moe.attention.key_length u32              = 128
llama_model_loader: - kv  17:            qwen3moe.attention.value_length u32              = 128
llama_model_loader: - kv  18:                      qwen3moe.expert_count u32              = 128
llama_model_loader: - kv  19:        qwen3moe.expert_feed_forward_length u32              = 768
llama_model_loader: - kv  20:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  21:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  22:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  23:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  24:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  25:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  26:            tokenizer.ggml.padding_token_id u32              = 151654
llama_model_loader: - kv  27:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  28:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  29:               general.quantization_version u32              = 2
llama_model_loader: - kv  30:                          general.file_type u32              = 15
llama_model_loader: - kv  31:                      quantize.imatrix.file str              = Qwen3-30B-A3B-GGUF/imatrix_unsloth.dat
llama_model_loader: - kv  32:                   quantize.imatrix.dataset str              = unsloth_calibration_Qwen3-30B-A3B.txt
llama_model_loader: - kv  33:             quantize.imatrix.entries_count i32              = 384
llama_model_loader: - kv  34:              quantize.imatrix.chunks_count i32              = 685
llama_model_loader: - type  f32:  241 tensors
llama_model_loader: - type q4_K:  290 tensors
llama_model_loader: - type q5_K:   37 tensors
llama_model_loader: - type q6_K:   11 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 16.49 GiB (4.64 BPW) 
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3moe
print_info: vocab_only       = 0
print_info: n_ctx_train      = 40960
print_info: n_embd           = 2048
print_info: n_layer          = 48
print_info: n_head           = 32
print_info: n_head_kv        = 4
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 8
print_info: n_embd_k_gqa     = 512
print_info: n_embd_v_gqa     = 512
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 6144
print_info: n_expert         = 128
print_info: n_expert_used    = 8
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 40960
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 30B.A3B
print_info: model params     = 30.53 B
print_info: general.name     = Qwen3-30B-A3B
print_info: n_ff_exp         = 768
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 11 ','
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151654 '<|vision_pad|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
ggml_backend_cuda_buffer_type_alloc_buffer: allocating 16722.37 MiB on device 0: cudaMalloc failed: out of memory
alloc_tensor_range: failed to allocate ROCm0 buffer of size 17534674944
llama_model_load: error loading model: unable to allocate ROCm0 buffer
llama_model_load_from_file_impl: failed to load model
common_init_from_params: failed to load model '/data/Qwen3-30B-A3B-UD-Q4_K_XL.gguf'
srv    load_model: failed to load model, '/data/Qwen3-30B-A3B-UD-Q4_K_XL.gguf'
srv    operator(): operator(): cleaning up before exit...
main: exiting due to model loading error

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions