Skip to content

Commit 21b45e4

Browse files
committed
Add Google Analytics tracking id
1 parent 1451a80 commit 21b45e4

File tree

2 files changed

+23
-2
lines changed

2 files changed

+23
-2
lines changed

_posts/2015-01-24-golden-ratio-and-fibonacci-numbers.md

+12-2
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,18 @@ category: math
55
tags: golden_ratio, Fibonacci, series
66
---
77

8+
<script>
9+
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
10+
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
11+
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
12+
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
13+
14+
ga('create', 'UA-58930825-1', 'auto');
15+
ga('send', 'pageview');
16+
17+
</script>
18+
19+
820
Pretty much everybody heard about the golden ratio, and if you are a little
921
math-inclined or still remember something from school, you may have heard
1022
the Fibonacci numbers too. That is, 0, 1, 1, 2, 3, 5, 8, 13, 21, etc, where
@@ -124,5 +136,3 @@ adjacent Fibonacci numbers (can be very close to the golden ratio but not
124136
exactly), you will end up with [a square (or two)](http://www.mathsisfun.com/numbers/images/fibonacci-spiral.gif),
125137
that is, the ratio of the sides is $$a_2/a_1$$.
126138

127-
128-

index.html

+11
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,17 @@
11
---
22
layout: default
33
---
4+
<script>
5+
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
6+
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
7+
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
8+
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
9+
10+
ga('create', 'UA-58930825-1', 'auto');
11+
ga('send', 'pageview');
12+
13+
</script>
14+
415

516
<div class="posts">
617
{% for post in site.posts %}

0 commit comments

Comments
 (0)