Skip to content

Commit 6acf229

Browse files
committed
adding golden ratio draft
1 parent 0575366 commit 6acf229

13 files changed

+587
-10
lines changed

_config.yml

+9-8
Original file line numberDiff line numberDiff line change
@@ -3,13 +3,14 @@
33
#
44

55
# Name of your site (displayed in the header)
6-
name: Your Name
6+
name: Chih-hsiang Cheng
77

88
# Short bio or description (displayed in the header)
9-
description: Web Developer from Somewhere
9+
description: Scientist
1010

1111
# URL of your avatar or profile pic (you could use your GitHub profile pic)
12-
avatar: https://raw.githubusercontent.com/barryclark/jekyll-now/master/images/jekyll-logo.png
12+
avatar: https://avatars3.githubusercontent.com/u/1696423?v=2&s=460
13+
##https://raw.githubusercontent.com/barryclark/jekyll-now/master/images/jekyll-logo.png
1314

1415
#
1516
# Flags below are optional
@@ -18,15 +19,15 @@ avatar: https://raw.githubusercontent.com/barryclark/jekyll-now/master/images/je
1819
# Includes an icon in the footer for each username you enter
1920
footer-links:
2021
dribbble:
21-
email:
22-
facebook:
22+
23+
facebook: chihhsiang.cheng
2324
flickr:
24-
github: barryclark/jekyll-now
25+
github:
2526
instagram:
26-
linkedin:
27+
linkedin: physcheng
2728
pinterest:
2829
rss: # just type anything here for a working RSS icon, make sure you set the "url" above!
29-
twitter: jekyllrb
30+
twitter:
3031
stackoverflow: # your stackoverflow profile, e.g. "users/50476/bart-kiers"
3132

3233
# Your disqus shortname, entering this will enable commenting on posts
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,92 @@
1+
---
2+
layout: post
3+
title: Golden Ratio and Fibonacci Numbers
4+
---
5+
6+
Pretty much everybody heard about the golden ratio, and if you are a little
7+
math-inclined or still remember something from school, you may have heard
8+
the Fibonacci numbers too. That is, 0, 1, 1, 2, 3, 5, 8, 13, 21, etc, where
9+
each number in the sequence is the sum of the previous two numbers,
10+
$$f_n = f_{n-1} + f_{n-2}$$. The golden ratio and the Fibonacci numbers
11+
are related. As the sequence goes on, the ratio of the adjacent numbers
12+
approaches the golden ratio, i.e.,
13+
$$
14+
\lim_{n\to \infty} (f_n/f_{n+1}) = \phi = 0.61803398875 \dots
15+
$$
16+
17+
Many people think that the golden ratio is the most beautiful ratio
18+
and can be found everywhere in art, architecture, and even in nature.
19+
But some people argue that most of those perceptions are
20+
[just myths](http://www.lhup.edu/~dsimanek/pseudo/fibonacc.htm).
21+
People often strech the observations to fit their theories and cherry-pick
22+
evidence. But, I am not going to talk about this here.
23+
24+
On wikipedia or Google you can find a lot of mathematics on the golden ratio
25+
and Fibonacci numbers. Here I want to share a simple way I understand
26+
(and remember) them.
27+
28+
Golden Ratio and Paper Cutting
29+
------------------------------
30+
31+
The simplest way (for me, at least) to remember the golden ratio is the
32+
following. Take a rectangular piece of paper; cut away the largest square
33+
(the side equal to the short side of the original rectangle); if the
34+
remaining rectangle is *similar* to the original, then ratio of the
35+
two sides of the rectangle (short to long) is the golden ratio.
36+
37+
![Rectangle division](../images/2014/golden-ratio-1.png)
38+
39+
As shown in the picture above, the equality of the two ratios can be
40+
expressed in an equation:
41+
42+
$$
43+
\frac{1-x}{x} = \frac{x}{1}.
44+
$$
45+
46+
Multiply both side by $$x$$ and move things around a little bit, you get
47+
48+
$$
49+
x^2 + x -1 =0.
50+
$$
51+
52+
It's a simple quadratic equation and can be solved easily,
53+
$$ x = \frac{1}{2}(-1 \pm \sqrt{5}) $$. Taking the positive solution,
54+
we get $$ x = \phi= \frac{1}{2}(-1 + \sqrt{5}) = 0.61803398875 \dots $$.
55+
The other solution is exactly $$-1/\phi = -1-\phi = -1.61803398875 \dots $$.
56+
57+
Fibonacci Numbers and Convergence of Ratios
58+
-------------------------------------------
59+
60+
The ratio of adjacent numbers in Fibonacci sequence converges to
61+
the golden ratio.
62+
63+
Let's prove the ratio will converge. For a sequence $$\{a_n\}$$ where
64+
$$a_n = a_{n-1}+a_{n-2}$$, let's take the difference of the two ratios
65+
66+
$$
67+
\begin{eqnarray}
68+
\delta_n &=& \frac{a_{n+1}}{a_{n}} - \frac{a_{n+2}}{a_{n+1}} \\
69+
&=& \frac{a_{n+1}^2 - a_{n}a_{n+2}}{a_n a_{n+1}}
70+
\end{eqnarray}
71+
$$
72+
73+
The numerator can be written as
74+
75+
$$
76+
\begin{eqnarray}
77+
N_n &\equiv& a^2_{n+1} - a_n a_{n+2} \\
78+
&=& a^2_{n+1} - a_n (a_n + a_{n+1})\\
79+
&=& -a_n^2 + a_{n+1}(a_{n+1} - a_n) \\
80+
&=& -a_n^2 + a_{n+1}a_{n-1},
81+
\end{eqnarray}
82+
$$
83+
84+
which is exactly $$-N_{n-1}$$. That is, the numerator of $$\delta_{n-1}$$
85+
with a negative sign. So, we know the numerator of $$\delta_n$$ is a
86+
constant with a flipping sign. But the denominator $a_na_{n+1}$ is a fast
87+
growing number. So $$\delta_n$$ approaches zero very quickly. Therefore,
88+
we can conclude that the ratio $$a_{n+1}/a_n$$ converges.
89+
90+
Note that, it does not matter what the starting values $$a_1$$ and $$a_2$$ are.
91+
As long as $$a_n = a_{n-1}+a_{n-2}$$, the ratio converges as $$n\to \infty$$.
92+
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,63 @@
1+
---
2+
layout: post
3+
title: Golden Ratio and Fibonacci Numbers
4+
---
5+
6+
Pretty much everybody heard about the golden ratio, and if you are a little
7+
math-inclined or still remember something from school, you may have heard
8+
the Fibonacci numbers too. That is, 0, 1, 1, 2, 3, 5, 8, 13, 21, etc, where
9+
each number in the sequence is the sum of the previous two numbers,
10+
$$f_n = f_{n-1} + f_{n-2}$$. The golden ratio and the Fibonacci numbers
11+
are related. As the sequence goes on, the ratio of the adjacent numbers
12+
approaches the golden ratio, i.e.,
13+
$$
14+
\lim_{n\to \infty} (f_n/f_{n+1}) = \phi = 0.61803398875 \dots
15+
$$
16+
17+
Many people think that the golden ratio is the most beautiful ratio
18+
and can be found everywhere in art, architecture, and even in nature.
19+
But some people argue that most of those perceptions are
20+
[just myths](http://www.lhup.edu/~dsimanek/pseudo/fibonacc.htm).
21+
People often strech the observations to fit their theories and cherry-pick
22+
evidence. But, I am not going to talk about this here.
23+
24+
On wikipedia or Google you can find a lot of mathematics on the golden ratio
25+
and Fibonacci numbers. Here I want to share a simple way I understand
26+
(and remember) them.
27+
28+
Golden Ratio and Paper Cutting
29+
------------------------------
30+
31+
The simplest way (for me, at least) to remember the golden ratio is the
32+
following. Take a rectangular piece of paper; cut away the largest square
33+
(the side equal to the short side of the original rectangle); if the
34+
remaining rectangle is *similar* to the original, then ratio of the
35+
two sides of the rectangle (short to long) is the golden ratio.
36+
37+
![Rectangle division](../images/2014/golden-ratio-1.png)
38+
39+
As shown in the picture above, the equality of the two ratios can be
40+
expressed in an equation:
41+
42+
$$
43+
\frac{1-x}{x} = \frac{x}{1}.
44+
$$
45+
46+
Multiply both side by $$x$$ and move things around a little bit, you get
47+
48+
$$
49+
x^2 + x -1 =0.
50+
$$
51+
52+
It's a simple quadratic equation and can be solved easily,
53+
$$ x = \frac{1}{2}(-1 \pm \sqrt{5}) $$. Taking the positive solution,
54+
we get $$ x = \phi= \frac{1}{2}(-1 + \sqrt{5}) = 0.61803398875 \dots $$.
55+
The other solution is exactly $$-1/\phi =
56+
57+
Fibonacci Numbers and Convergence of Ratios
58+
-------------------------------------------
59+
60+
The ratio of adjacent numbers in Fibonacci sequence converges to
61+
the golden ratio.
62+
63+
Let's prove

_layouts/default.html

+5
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,11 @@
1717
<link rel="stylesheet" type="text/css" href="{{ site.baseurl }}/style.css" />
1818
<link rel="alternate" type="application/rss+xml" title="{{ site.name }} - {{ site.description }}" href="{{ site.baseurl }}/feed.xml" />
1919

20+
<!-- MathJax for latex rendering -->
21+
<script type="text/javascript"
22+
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
23+
</script>
24+
2025
<!-- Created with Jekyll Now - http://github.com/barryclark/jekyll-now -->
2126
</head>
2227

_posts/2014-09-21-Test-Math.md

+6
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
---
2+
layout: post
3+
title: Test MathJax LaTex rendering
4+
---
5+
6+
This is an inline equation $$x_1^2+ y_2^3 = \sqrt{z}$$.

_posts/2014-09-21-Test-Math.md~

+10
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
---
2+
layout: post
3+
title: You're up and running!
4+
---
5+
6+
Next you can update your site name, avatar and other options using the _config.yml file in the root of your repository (shown below :point_down:).
7+
8+
![_config.yml]({{ site.baseurl }}/images/config.png)
9+
10+
The easiest way to make your first post is to edit this one. Go into /_posts/ and update the Hello World markdown file. For more instructions head over to the [Jekyll Now repository](https://github.com/barryclark/jekyll-now) on GitHub.

_posts/2014-3-3-Hello-World.md

+2
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,8 @@ layout: post
33
title: You're up and running!
44
---
55

6+
Hello World!
7+
68
Next you can update your site name, avatar and other options using the _config.yml file in the root of your repository (shown below :point_down:).
79

810
![_config.yml]({{ site.baseurl }}/images/config.png)

about.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -12,4 +12,4 @@ A place to include any other types of information that you'd like to include abo
1212

1313
### Contact me
1414

15-
[email@domain.com](mailto:email@domain.com)
15+
[ahsiang.c@gmail.com](mailto:ahsiang.c@gmail.com)

images/2014/golden-ratio-1.png

3.54 KB
Loading

index.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -15,4 +15,4 @@ <h1><a href="{{ site.baseurl }}{{ post.url }}">{{ post.title }}</a></h1>
1515
<a href="{{ site.baseurl }}{{ post.url }}" class="read-more">Read More</a>
1616
</article>
1717
{% endfor %}
18-
</div>
18+
</div>
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,121 @@
1+
{
2+
"metadata": {
3+
"name": "",
4+
"signature": "sha256:0f13dbcebcfe5143adf42945c984142187bf6dab76655654aefd085ca912ce67"
5+
},
6+
"nbformat": 3,
7+
"nbformat_minor": 0,
8+
"worksheets": [
9+
{
10+
"cells": [
11+
{
12+
"cell_type": "markdown",
13+
"metadata": {},
14+
"source": [
15+
"<h1>Golden Ratio and Fibonacci Numbers</h1>"
16+
]
17+
},
18+
{
19+
"cell_type": "code",
20+
"collapsed": false,
21+
"input": [
22+
"%matplotlib inline"
23+
],
24+
"language": "python",
25+
"metadata": {},
26+
"outputs": [],
27+
"prompt_number": 1
28+
},
29+
{
30+
"cell_type": "code",
31+
"collapsed": false,
32+
"input": [
33+
"import numpy as np\n",
34+
"import matplotlib.pyplot as plt\n",
35+
"import math"
36+
],
37+
"language": "python",
38+
"metadata": {},
39+
"outputs": [],
40+
"prompt_number": 4
41+
},
42+
{
43+
"cell_type": "code",
44+
"collapsed": false,
45+
"input": [
46+
"sqrt = math.sqrt"
47+
],
48+
"language": "python",
49+
"metadata": {},
50+
"outputs": [],
51+
"prompt_number": 5
52+
},
53+
{
54+
"cell_type": "code",
55+
"collapsed": false,
56+
"input": [
57+
"phi = (sqrt(5)-1)/2\n",
58+
"print phi"
59+
],
60+
"language": "python",
61+
"metadata": {},
62+
"outputs": [
63+
{
64+
"output_type": "stream",
65+
"stream": "stdout",
66+
"text": [
67+
"0.61803398875\n"
68+
]
69+
}
70+
],
71+
"prompt_number": 6
72+
},
73+
{
74+
"cell_type": "code",
75+
"collapsed": false,
76+
"input": [
77+
"fig = plt.figure(figsize=(8,5), frameon=False)\n",
78+
"ax = plt.subplot(aspect='equal')\n",
79+
"x1= np.array([0, 1, 1, 0, 0])\n",
80+
"y1= np.array([0, 0, phi, phi, 0])\n",
81+
"ax.axis('on')\n",
82+
"ax.set_xlim(-0.5,1.5)\n",
83+
"ax.set_ylim(-0.3, 1.0)\n",
84+
"plt.plot(x1, y1, linewidth=1)\n",
85+
"\n"
86+
],
87+
"language": "python",
88+
"metadata": {},
89+
"outputs": [
90+
{
91+
"metadata": {},
92+
"output_type": "pyout",
93+
"prompt_number": 27,
94+
"text": [
95+
"[<matplotlib.lines.Line2D at 0x1110b1d10>]"
96+
]
97+
},
98+
{
99+
"metadata": {},
100+
"output_type": "display_data",
101+
"png": "iVBORw0KGgoAAAANSUhEUgAAAdwAAAE4CAYAAADxdkJhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEHNJREFUeJzt3V+sZWddx+HvzxkgQSFtUzNAO6QXFAETtBrHCiZsA8pQ\nkpYYA9Y/IBJpjKPGGwti5JiokRtDSLU2pDS9MEwIIqmmUCqyhRAsVKGAzEDHOMnMFCpIIQpcdMLP\ni7Opm8P8OWfWmffM7jzPTdfa+917ve3q6ue8a+85re4OAHB+fd9OTwAALgaCCwADCC4ADCC4ADCA\n4ALAAIILAANMCm5VvaOqHq6qz5xhzNuq6sGqeqCqrplyPABYVVNXuHck2X+6J6vquiTP6u6rk7w+\nya0TjwcAK2lScLv7I0keOcOQ65PcuRh7X5JLqmrPlGMCwCo635/hXpHk2NL+8SRXnudjAsAFZ8SX\npmrDvt8lCcBFZ/d5fv8TSfYu7V+5eOy7VJUIA7BSunvjgvKMzndw70pyIMnBqro2yde6++FTDfQ/\nUVgda2trWVtb2+lpsAnO1epwrlZL1ZZam2RicKvqnUlelOTyqjqW5M1JnpAk3X1bd99dVddV1ZEk\n30jy2inHA4BVNSm43X3jJsYcmHIMAHg88Jum2LLZbLbTU2CTnKvV4Vw9/tWF8NlpVfWFMA8A2Iyq\n2vKXpqxwAWAAwQWAAQQXAAYQXAAYQHABYADBBYABBBcABhBcABhAcAFgAMEFgAEEFwAGEFwAGEBw\nAWAAwQWAAQQXAAYQXAAYQHABYADBBYABBBcABhBcABhAcAFgAMEFgAEEFwAGEFwAGEBwAWAAwQWA\nAQQXAAYQXAAYQHABYADBBYABBBcABhBcABhgcnCran9VHa6qB6vq5lM8f3lVvb+qPlVVn62qX5t6\nTABYNdXd5/7iql1JPp/kJUlOJPlEkhu7+9DSmLUkT+ruN1bV5Yvxe7r75NKYnjIPABipqtLdtZXX\nTF3h7ktypLuPdvejSQ4muWHDmC8meepi+6lJ/ns5tgBwMdg98fVXJDm2tH88yU9uGPP2JP9UVQ8l\neUqSV048JgCsnKkr3M3cB/6DJJ/q7mck+dEkf1lVT5l4XABYKVNXuCeS7F3a35v1Ve6yFyT50yTp\n7v+oqv9M8kNJ7l8etLa29tj2bDbLbDabODUA2B7z+Tzz+XzSe0z90tTurH8J6sVJHkry8Xzvl6b+\nIsnXu/uPq2pPkn9N8vzu/urSGF+aAmBlnMuXpiatcLv7ZFUdSHJPkl1Jbu/uQ1V10+L525L8WZI7\nquqBrN/C/v3l2ALAxWDSCnfbJmGFC8AK2Yk/FgQAbILgAsAAggsAAwguAAwguAAwgOACwACCCwAD\nCC4ADCC4ADCA4ALAAIILAAMILgAMILgAMIDgAsAAggsAAwguAAwguAAwgOACwACCCwADCC4ADCC4\nADCA4ALAAIILAAMILgAMILgAMIDgAsAAggsAAwguAAwguAAwgOACwACCCwADCC4ADCC4ADCA4ALA\nAJODW1X7q+pwVT1YVTefZsysqj5ZVZ+tqvnUYwLAqqnuPvcXV+1K8vkkL0lyIsknktzY3YeWxlyS\n5KNJXtrdx6vq8u7+yob36SnzYKzLLkseeWSnZwGPL5demnz1qzs9CzarqtLdtZXX7J54zH1JjnT3\n0cUEDia5IcmhpTG/lORvu/t4kmyMLavnkUcSPx/B9qot/aebVTT1lvIVSY4t7R9fPLbs6iSXVdWH\nqur+qvrViccEgJUzdYW7mXXOE5L8WJIXJ3lyko9V1b9094MTjw0AK2NqcE8k2bu0vzfrq9xlx5J8\npbu/leRbVfXhJD+S5LuCu7a29tj2bDbLbDabODUA2B7z+Tzz+XzSe0z90tTurH9p6sVJHkry8Xzv\nl6aek+SWJC9N8qQk9yV5VXd/bmmML02tkCqf4cJ2c12tluFfmuruk1V1IMk9SXYlub27D1XVTYvn\nb+vuw1X1/iSfTvLtJG9fji0AXAwmrXC3bRJWuCvFT+Kw/VxXq+VcVrh+0xQADCC4ADCA4ALAAIIL\nAAMILgAMILgAMIDgAsAAggsAAwguAAwguAAwgOACwACCCwADCC4ADCC4ADCA4ALAAIILAAMILgAM\nILgAMIDgAsAAggsAAwguAAwguAAwgOACwACCCwADCC4ADCC4ADCA4ALAAIILAAMILgAMILgAMIDg\nAsAAggsAAwguAAwguAAwwOTgVtX+qjpcVQ9W1c1nGPcTVXWyqn5+6jEBYNVMCm5V7UpyS5L9SZ6X\n5Maqeu5pxr0lyfuT1JRjAsAqmrrC3ZfkSHcf7e5HkxxMcsMpxv12kncn+fLE4wHASpoa3CuSHFva\nP7547DFVdUXWI3zr4qGeeEwAWDlTg7uZeL41yRu6u7N+O9ktZQAuOrsnvv5Ekr1L+3uzvspd9uNJ\nDlZVklye5GVV9Wh337U8aG1t7bHt2WyW2Ww2cWoAsD3m83nm8/mk96j1hec5vrhqd5LPJ3lxkoeS\nfDzJjd196DTj70jy9939ng2P95R5MFZV4nTB9nJdrZaqSndv6Y7tpBVud5+sqgNJ7kmyK8nt3X2o\nqm5aPH/blPcHgMeLSSvcbZuEFe5K8ZM4bD/X1Wo5lxWu3zQFAAMILgAMILgAMIDgAsAAggsAAwgu\nAAwguAAwgOACwACCCwADCC4ADCC4ADCA4ALAAIILAAMILgAMILgAMIDgAsAAggsAAwguAAwguAAw\ngOACwACCCwADCC4ADCC4ADCA4ALAAIILAAMILgAMILgAMIDgAsAAggsAAwguAAwguAAwgOACwACC\nCwADCC4ADDA5uFW1v6oOV9WDVXXzKZ7/5ap6oKo+XVUfrarnTz0mAKya6u5zf3HVriSfT/KSJCeS\nfCLJjd19aGnMTyX5XHd/var2J1nr7ms3vE9PmQdjVSVOF2wv19Vqqap0d23lNVNXuPuSHOnuo939\naJKDSW5YHtDdH+vury9270ty5cRjAsDKmRrcK5IcW9o/vnjsdF6X5O6JxwSAlbN74us3fQOkqn4m\nya8neeGpnl9bW3tsezabZTabTZwaAGyP+Xye+Xw+6T2mfoZ7bdY/k92/2H9jkm9391s2jHt+kvck\n2d/dR07xPj7DXSE+a4Lt57paLTvxGe79Sa6uqquq6olJXpXkrg2TembWY/srp4otAFwMJt1S7u6T\nVXUgyT1JdiW5vbsPVdVNi+dvS/JHSS5NcmtVJcmj3b1v2rQBYLVMuqW8bZNwS3mluPUF2891tVp2\n4pYyALAJggsAAwguAAwguAAwgOACwACCCwADCC4ADCC4ADCA4ALAAIILAAMILgAMILgAMIDgAsAA\nggsAAwguAAwguAAwgOACwACCCwADCC4ADCC4ADCA4ALAAIILAAMILgAMILgAMIDgAsAAggsAAwgu\nAAwguAAwgOACwACCCwADCC4ADCC4ADCA4ALAAIILAANMDm5V7a+qw1X1YFXdfJoxb1s8/0BVXTP1\nmACwaiYFt6p2Jbklyf4kz0tyY1U9d8OY65I8q7uvTvL6JLdOOSYArKKpK9x9SY5099HufjTJwSQ3\nbBhzfZI7k6S770tySVXtmXhcAFgpU4N7RZJjS/vHF4+dbcyVE48LACtl98TX9ybH1dlet7a29tj2\nbDbLbDY750lx/tXGMwpMcumlOz0DzmQ+n2c+n096j+rebDNP8eKqa5Osdff+xf4bk3y7u9+yNOav\nk8y7++Bi/3CSF3X3w0tjeso8AGCkqkp3b2npMfWW8v1Jrq6qq6rqiUleleSuDWPuSvLqxQSvTfK1\n5dgCwMVg0i3l7j5ZVQeS3JNkV5Lbu/tQVd20eP627r67qq6rqiNJvpHktZNnDQArZtIt5W2bhFvK\nAKyQnbilDABsguACwACCCwADCC4ADCC4ADCA4ALAAIILAAMILgAMILgAMIDgAsAAggsAAwguAAwg\nuAAwgOACwACCCwADCC4ADCC4ADCA4ALAAIILAAMILgAMILgAMIDgAsAAggsAAwguAAwguAAwgOAC\nwACCCwADCC4ADCC4ADCA4ALAAIILAAMILgAMILgAMIDgAsAA5xzcqrqsqu6tqi9U1Qeq6pJTjNlb\nVR+qqn+vqs9W1e9Mmy4ArKYpK9w3JLm3u5+d5IOL/Y0eTfJ73f3DSa5N8ltV9dwJxwSAlTQluNcn\nuXOxfWeSV2wc0N1f6u5PLbb/N8mhJM+YcEwAWElTgrunux9ebD+cZM+ZBlfVVUmuSXLfhGMCwEra\nfaYnq+reJE87xVNvWt7p7q6qPsP7/ECSdyf53cVK93usra09tj2bzTKbzc40NQAYZj6fZz6fT3qP\n6j5tJ8/8wqrDSWbd/aWqenqSD3X3c04x7glJ/iHJ+7r7rad5rz7XeQDAaFWV7q6tvGbKLeW7krxm\nsf2aJO89xYQqye1JPne62ALAxWDKCveyJO9K8swkR5O8sru/VlXPSPL27n55Vf10kg8n+XSS7xzo\njd39/g3vZYULwMo4lxXuOQd3OwkuAKtk9C1lAGCTBBcABhBcABhAcAFgAMEFgAEEFwAGEFwAGEBw\nAWAAwQWAAQQXAAYQXAAYQHABYADBBYABBJctm8/nOz0FNsm5Wh3O1eOf4LJl/sOwOpyr1eFcPf4J\nLgAMILgAMEB1907PIVW185MAgC3o7trK+AsiuADweOeWMgAMILgAMMCOBLeqLquqe6vqC1X1gaq6\n5DTjjlbVp6vqk1X18dHzvJhV1f6qOlxVD1bVzacZ87bF8w9U1TWj58j/O9v5qqpZVX19cS19sqr+\ncCfmebGrqndU1cNV9ZkzjHFdXSDOdr62el3t1Ar3DUnu7e5nJ/ngYv9UOsmsu6/p7n3DZneRq6pd\nSW5Jsj/J85LcWFXP3TDmuiTP6u6rk7w+ya3DJ0qSzZ2vhX9eXEvXdPefDJ0k33FH1s/TKbmuLjhn\nPF8Lm76udiq41ye5c7F9Z5JXnGHslr4FxrbYl+RIdx/t7keTHExyw4Yxj53D7r4vySVVtWfsNFnY\nzPlKXEs7rrs/kuSRMwxxXV1ANnG+ki1cVzsV3D3d/fBi++Ekp/sXqpP8Y1XdX1W/MWZqJLkiybGl\n/eOLx8425srzPC9ObTPnq5O8YHGb8u6qet6w2bEVrqvVsqXravf5mkVV3Zvkaad46k3LO93dZ/hz\nuC/s7i9W1Q8mubeqDi9+4uD82uyfFdv4k50/Y7YzNvPP/d+S7O3ub1bVy5K8N8mzz++0OEeuq9Wx\npevqvAW3u3/2dM8tPoR+Wnd/qaqenuS/TvMeX1z89ctV9XdZv3UmuOffiSR7l/b3Zv0n7TONuXLx\nGOOd9Xx19/8sbb+vqv6qqi7r7q8OmiOb47paIVu9rnbqlvJdSV6z2H5N1n8q+C5V9eSqespi+/uT\n/FyS036zj211f5Krq+qqqnpikldl/ZwtuyvJq5Okqq5N8rWljwkY66znq6r2VFUttvdl/ZfeiO2F\nx3W1QrZ6XZ23Fe5Z/HmSd1XV65IcTfLKJKmqZyR5e3e/POu3o9+z+HvZneRvuvsDOzPdi0t3n6yq\nA0nuSbIrye3dfaiqblo8f1t3311V11XVkSTfSPLaHZzyRW0z5yvJLyT5zao6meSbSX5xxyZ8Eauq\ndyZ5UZLLq+pYkjcneULiuroQne18ZYvXlV/tCAAD+E1TADCA4ALAAIILAAMILgAMILgAMIDgAsAA\nggsAAwguAAzwf71+lTyNrZ9PAAAAAElFTkSuQmCC\n",
102+
"text": [
103+
"<matplotlib.figure.Figure at 0x1110ca890>"
104+
]
105+
}
106+
],
107+
"prompt_number": 27
108+
},
109+
{
110+
"cell_type": "code",
111+
"collapsed": false,
112+
"input": [],
113+
"language": "python",
114+
"metadata": {},
115+
"outputs": []
116+
}
117+
],
118+
"metadata": {}
119+
}
120+
]
121+
}

0 commit comments

Comments
 (0)