|
20 | 20 | "language": "python", |
21 | 21 | "metadata": {}, |
22 | 22 | "outputs": [], |
| 23 | + "prompt_number": 2 |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "collapsed": false, |
| 28 | + "input": [ |
| 29 | + "%matplotlib inline" |
| 30 | + ], |
| 31 | + "language": "python", |
| 32 | + "metadata": {}, |
| 33 | + "outputs": [], |
23 | 34 | "prompt_number": 1 |
24 | 35 | }, |
25 | 36 | { |
|
58 | 69 | " <tbody>\n", |
59 | 70 | " <tr>\n", |
60 | 71 | " <th>0</th>\n", |
61 | | - " <td>1944-01-01 00:00:00</td>\n", |
| 72 | + " <td>1944-01-01</td>\n", |
62 | 73 | " <td> 751</td>\n", |
63 | 74 | " <td> 85</td>\n", |
64 | 75 | " <td> 1280</td>\n", |
|
69 | 80 | " </tr>\n", |
70 | 81 | " <tr>\n", |
71 | 82 | " <th>1</th>\n", |
72 | | - " <td>1944-02-01 00:00:00</td>\n", |
| 83 | + " <td>1944-02-01</td>\n", |
73 | 84 | " <td> 713</td>\n", |
74 | 85 | " <td> 77</td>\n", |
75 | 86 | " <td> 1169</td>\n", |
|
80 | 91 | " </tr>\n", |
81 | 92 | " <tr>\n", |
82 | 93 | " <th>2</th>\n", |
83 | | - " <td>1944-03-01 00:00:00</td>\n", |
| 94 | + " <td>1944-03-01</td>\n", |
84 | 95 | " <td> 741</td>\n", |
85 | 96 | " <td> 90</td>\n", |
86 | 97 | " <td> 1128</td>\n", |
|
91 | 102 | " </tr>\n", |
92 | 103 | " <tr>\n", |
93 | 104 | " <th>3</th>\n", |
94 | | - " <td>1944-04-01 00:00:00</td>\n", |
| 105 | + " <td>1944-04-01</td>\n", |
95 | 106 | " <td> 650</td>\n", |
96 | 107 | " <td> 89</td>\n", |
97 | 108 | " <td> 978</td>\n", |
|
102 | 113 | " </tr>\n", |
103 | 114 | " <tr>\n", |
104 | 115 | " <th>4</th>\n", |
105 | | - " <td>1944-05-01 00:00:00</td>\n", |
| 116 | + " <td>1944-05-01</td>\n", |
106 | 117 | " <td> 681</td>\n", |
107 | 118 | " <td> 106</td>\n", |
108 | 119 | " <td> 1029</td>\n", |
|
113 | 124 | " </tr>\n", |
114 | 125 | " </tbody>\n", |
115 | 126 | "</table>\n", |
| 127 | + "<p>5 rows \u00d7 8 columns</p>\n", |
116 | 128 | "</div>" |
117 | 129 | ], |
118 | 130 | "metadata": {}, |
119 | 131 | "output_type": "pyout", |
120 | | - "prompt_number": 2, |
| 132 | + "prompt_number": 3, |
121 | 133 | "text": [ |
122 | | - " date beef veal pork lamb_and_mutton broilers \\\n", |
123 | | - "0 1944-01-01 00:00:00 751 85 1280 89 NaN \n", |
124 | | - "1 1944-02-01 00:00:00 713 77 1169 72 NaN \n", |
125 | | - "2 1944-03-01 00:00:00 741 90 1128 75 NaN \n", |
126 | | - "3 1944-04-01 00:00:00 650 89 978 66 NaN \n", |
127 | | - "4 1944-05-01 00:00:00 681 106 1029 78 NaN \n", |
| 134 | + " date beef veal pork lamb_and_mutton broilers other_chicken \\\n", |
| 135 | + "0 1944-01-01 751 85 1280 89 NaN NaN \n", |
| 136 | + "1 1944-02-01 713 77 1169 72 NaN NaN \n", |
| 137 | + "2 1944-03-01 741 90 1128 75 NaN NaN \n", |
| 138 | + "3 1944-04-01 650 89 978 66 NaN NaN \n", |
| 139 | + "4 1944-05-01 681 106 1029 78 NaN NaN \n", |
| 140 | + "\n", |
| 141 | + " turkey \n", |
| 142 | + "0 NaN \n", |
| 143 | + "1 NaN \n", |
| 144 | + "2 NaN \n", |
| 145 | + "3 NaN \n", |
| 146 | + "4 NaN \n", |
128 | 147 | "\n", |
129 | | - " other_chicken turkey \n", |
130 | | - "0 NaN NaN \n", |
131 | | - "1 NaN NaN \n", |
132 | | - "2 NaN NaN \n", |
133 | | - "3 NaN NaN \n", |
134 | | - "4 NaN NaN " |
| 148 | + "[5 rows x 8 columns]" |
135 | 149 | ] |
136 | 150 | } |
137 | 151 | ], |
138 | | - "prompt_number": 2 |
| 152 | + "prompt_number": 3 |
139 | 153 | }, |
140 | 154 | { |
141 | 155 | "cell_type": "code", |
|
233 | 247 | " </tr>\n", |
234 | 248 | " </tbody>\n", |
235 | 249 | "</table>\n", |
| 250 | + "<p>5 rows \u00d7 10 columns</p>\n", |
236 | 251 | "</div>" |
237 | 252 | ], |
238 | 253 | "metadata": {}, |
239 | 254 | "output_type": "pyout", |
240 | | - "prompt_number": 3, |
| 255 | + "prompt_number": 4, |
241 | 256 | "text": [ |
242 | 257 | " carat cut color clarity depth table price x y z\n", |
243 | 258 | "0 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43\n", |
244 | 259 | "1 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31\n", |
245 | 260 | "2 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31\n", |
246 | 261 | "3 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63\n", |
247 | | - "4 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75" |
| 262 | + "4 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75\n", |
| 263 | + "\n", |
| 264 | + "[5 rows x 10 columns]" |
248 | 265 | ] |
249 | 266 | } |
250 | 267 | ], |
251 | | - "prompt_number": 3 |
| 268 | + "prompt_number": 4 |
252 | 269 | }, |
253 | 270 | { |
254 | 271 | "cell_type": "code", |
|
358 | 375 | " </tr>\n", |
359 | 376 | " </tbody>\n", |
360 | 377 | "</table>\n", |
| 378 | + "<p>5 rows \u00d7 12 columns</p>\n", |
361 | 379 | "</div>" |
362 | 380 | ], |
363 | 381 | "metadata": {}, |
364 | 382 | "output_type": "pyout", |
365 | | - "prompt_number": 6, |
| 383 | + "prompt_number": 5, |
366 | 384 | "text": [ |
367 | | - " name mpg cyl disp hp drat wt qsec vs am gear carb\n", |
368 | | - "0 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4\n", |
369 | | - "1 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4\n", |
370 | | - "2 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1\n", |
371 | | - "3 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1\n", |
372 | | - "4 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2" |
| 385 | + " name mpg cyl disp hp drat wt qsec vs am gear \\\n", |
| 386 | + "0 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 \n", |
| 387 | + "1 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 \n", |
| 388 | + "2 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 \n", |
| 389 | + "3 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 \n", |
| 390 | + "4 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 \n", |
| 391 | + "\n", |
| 392 | + " carb \n", |
| 393 | + "0 4 \n", |
| 394 | + "1 4 \n", |
| 395 | + "2 1 \n", |
| 396 | + "3 1 \n", |
| 397 | + "4 2 \n", |
| 398 | + "\n", |
| 399 | + "[5 rows x 12 columns]" |
373 | 400 | ] |
374 | 401 | } |
375 | 402 | ], |
376 | | - "prompt_number": 6 |
| 403 | + "prompt_number": 5 |
377 | 404 | }, |
378 | 405 | { |
379 | 406 | "cell_type": "code", |
|
477 | 504 | "language": "python", |
478 | 505 | "metadata": {}, |
479 | 506 | "outputs": [], |
480 | | - "prompt_number": 13 |
| 507 | + "prompt_number": 6 |
481 | 508 | }, |
482 | 509 | { |
483 | 510 | "cell_type": "code", |
|
488 | 515 | "language": "python", |
489 | 516 | "metadata": {}, |
490 | 517 | "outputs": [], |
491 | | - "prompt_number": 14 |
| 518 | + "prompt_number": 7 |
492 | 519 | }, |
493 | 520 | { |
494 | 521 | "cell_type": "markdown", |
|
511 | 538 | "output_type": "display_data", |
512 | 539 | "png": "iVBORw0KGgoAAAANSUhEUgAAApAAAAHhCAYAAADZI46pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHBdJREFUeJzt3W9r3Xf9x/H3yTlpkjY5yekW2eq0XliWWerc0oj/qrUw\nL9gyNrRe0TopougE2QVvgDdABEFQxy6I9Iow9ke3UPGCBNkFR6s/t17oluLEGR12JvYkWZMmPed3\noSwubiZ5p8k5Tb6PBwx6ku/J+Rxezj3JSXNKzWazGQAAsE4d7T4AAADbi4AEACBFQAIAkCIgAQBI\nEZAAAKQISAAAUiprXfD000/HxMRE7NmzJx555JF3vWZsbCwuXrwYnZ2d8dBDD8Xtt9++6QcFAODm\nsOZ3IO+77744efLk//z8K6+8ElNTU/Gd73wnHnjggXj22Wc39YAAANxc1gzI/fv3R3d39//8/Msv\nvxz33ntvRETccccdMT8/H7Ozs5t3QgAAbiprvoS9lpmZmahWq8u3q9Vq1Ov16O3tjXq9/o6Y7O3t\nXXE9AADbyw0H5GrOnTsX4+PjKz525MiROHr06FY+LAAAW+iGA7Kvry8uX768fLtery9/h/HQoUMx\nPDy84vre3t6Ynp6OpaWlG33obaOrqysWFhbafYyWqlQqUavVbL3DFXXnCFsXia2LoWg7R/xn6w3d\n90YffHh4OF544YX40Ic+FK+99lp0d3dHb29vRFx/OfvdXq6+dOlSLC4u3uhDbxuVSqVQz/ftlpaW\nCvXci7p10XaOsHWR2LoYirrzRq0ZkE888UT85S9/iTfffDN+8IMfxGc+85loNBoRETE6Ohp33XVX\nTExMxA9/+MPYtWtXPPjgg1t+aAAA2mfNgDxx4sSaX+T48eObchgAAG5+3okGAIAUAQkAQIqABAAg\nRUACAJAiIAEASBGQAACkCEgAAFIEJAAAKQISAIAUAQkAQIqABAAgRUACAJAiIAEASBGQAACkCEgA\nAFIEJAAAKQISAIAUAQkAQIqABAAgRUACAJAiIAEASBGQAACkCEgAAFIEJAAAKQISAIAUAQkAQIqA\nBAAgRUACAJAiIAEASBGQAACkCEgAAFIEJAAAKQISAIAUAQkAQIqABAAgRUACAJAiIAEASBGQAACk\nCEgAAFIEJAAAKaVms9ls5QPOz8/H/Px8tPhh26qjoyMajUa7j9FSpVIpdu3aFVevXrX1DlbUnSNs\nXSS2Loai7RxxfeuBgYEN3beyyWdZU3d3d8zMzMTi4mKrH7ptenp64sqVK+0+Rkt1dnbGwMBAzM3N\n2XoHK+rOEbYuElsXQ9F2jri+9UZ5CRsAgBQBCQBAioAEACBFQAIAkCIgAQBIEZAAAKQISAAAUgQk\nAAApAhIAgBQBCQBAioAEACBFQAIAkCIgAQBIEZAAAKQISAAAUgQkAAApAhIAgBQBCQBAioAEACBF\nQAIAkCIgAQBIEZAAAKQISAAAUgQkAAApAhIAgBQBCQBAioAEACBFQAIAkCIgAQBIEZAAAKQISAAA\nUgQkAAApAhIAgBQBCQBAioAEACBFQAIAkCIgAQBIEZAAAKRU1rpgYmIizpw5E81mM0ZGRuLw4cMr\nPj83NxdPPvlkzM7ORqPRiE984hNx3333bdmBAQBor1UDstFoxNjYWDz88MNRrVbjsccei+Hh4Rgc\nHFy+5oUXXojbb7897r///pibm4sf/ehHcc8990S5XN7ywwMA0HqrvoQ9OTkZe/fujVqtFuVyOQ4e\nPBgXLlxYcU1fX18sLCxERMTCwkL09PSIRwCAHWzVgKzX69Hf3798u1qtxszMzIprRkZG4p///Gd8\n//vfj5/85Cfxuc99bmtOCgDATWHVl7BLpdKaX+B3v/td3HbbbXHq1KmYmpqKn//85/Gtb30rurq6\nol6vx+zs7Irre3t7o1JZ80cvd5RyuRydnZ3tPkZLvbWxrXe2ou4cYesisXUxFG3niBvbeNV79vX1\nxeXLl5dv1+v1qFarK6557bXX4tOf/nRExPLL3W+88Ua8973vjXPnzsX4+PiK648cORJHjx7d8IHZ\nXmq1WruPQAvYuThsXRy2ZjWrBuS+fftiamoqpqeno6+vL86fPx8nTpxYcc2tt94af/7zn+P9739/\nzM7OxhtvvLH8P7pDhw7F8PDwiut7e3tjeno6lpaWNvmp3Ly6urqWf060KCqVStRqNVvvcEXdOcLW\nRWLrYijazhH/2XpD913tk+VyOY4dOxanT5+ORqMRIyMjMTg4GGfPno2IiNHR0fjUpz4VzzzzTPz4\nxz+OZrMZn/3sZ2P37t0Rcf1nJv/7O5YREZcuXYrFxcUNHXg7qlQqhXq+b7e0tFSo517UrYu2c4St\ni8TWxVDUnTdqzRe/h4aGYmhoaMXHRkdHl/+8Z8+e+NKXvrT5JwMA4KbknWgAAEgRkAAApAhIAABS\nBCQAACkCEgCAFAEJAECKgAQAIEVAAgCQIiABAEgRkAAApAhIAABSBCQAACkCEgCAFAEJAECKgAQA\nIEVAAgCQIiABAEgRkAAApAhIAABSBCQAACkCEgCAFAEJAECKgAQAIEVAAgCQIiABAEgRkAAApAhI\nAABSBCQAACkCEgCAFAEJAECKgAQAIEVAAgCQIiABAEgRkAAApAhIAABSBCQAACkCEgCAFAEJAECK\ngAQAIEVAAgCQUmo2m81WPuD8/HzMz89Hix+2rTo6OqLRaLT7GC1VKpVi165dcfXqVVvvYEXdOcLW\nRWLrYijazhHXtx4YGNjQfSubfJY1dXd3x8zMTCwuLrb6odump6cnrly50u5jtFRnZ2cMDAzE3Nyc\nrXewou4cYesisXUxFG3niOtbb5SXsAEASBGQAACkCEgAAFIEJAAAKQISAIAUAQkAQIqABAAgRUAC\nAJAiIAEASBGQAACkCEgAAFIEJAAAKQISAIAUAQkAQIqABAAgRUACAJAiIAEASBGQAACkCEgAAFIE\nJAAAKQISAIAUAQkAQIqABAAgRUACAJAiIAEASBGQAACkCEgAAFIEJAAAKQISAIAUAQkAQIqABAAg\nRUACAJAiIAEASBGQAACkCEgAAFIEJAAAKQISAIAUAQkAQIqABAAgpbLWBRMTE3HmzJloNpsxMjIS\nhw8ffsc1r776avz617+Oa9euxe7du+PUqVNbclgAANpv1YBsNBoxNjYWDz/8cFSr1XjsscdieHg4\nBgcHl6+5cuVKjI2NxcmTJ6O/vz/m5ua2/NAAALTPqi9hT05Oxt69e6NWq0W5XI6DBw/GhQsXVlzz\n0ksvxQc/+MHo7++PiIg9e/Zs3WkBAGi7Vb8DWa/Xl8MwIqJarcbk5OSKa6ampuLatWvxs5/9LBYW\nFuJjH/tYfPjDH16+/+zs7Irre3t7o1JZ85XzHaVcLkdnZ2e7j9FSb21s652tqDtH2LpIbF0MRds5\n4sY2XvWepVJpzS9w7dq1+Mc//hFf/epXY3FxMR5//PG444474pZbbolz587F+Pj4iuuPHDkSR48e\n3fCB2V5qtVq7j0AL2Lk4bF0ctmY1qwZkX19fXL58efl2vV6ParW64pr+/v7YvXt3dHZ2RmdnZ+zf\nvz9ef/31uOWWW+LQoUMxPDy84vre3t6Ynp6OpaWlTXwaN7eurq5YWFho9zFaqlKpRK1Ws/UOV9Sd\nI2xdJLYuhqLtHPGfrTd039U+uW/fvpiamorp6eno6+uL8+fPx4kTJ1ZcMzw8HGNjY9FoNGJpaSkm\nJyfj4x//eERcf8n7v4MzIuLSpUuxuLi4oQNvR5VKpVDP9+2WlpYK9dyLunXRdo6wdZHYuhiKuvNG\nrRqQ5XI5jh07FqdPn45GoxEjIyMxODgYZ8+ejYiI0dHRGBwcjDvvvDN+/OMfR6lUipGRkXjPe97T\nksMDANB6a/705NDQUAwNDa342Ojo6Irbn/zkJ+OTn/zk5p4MAICbkneiAQAgRUACAJAiIAEASBGQ\nAACkCEgAAFIEJAAAKQISAIAUAQkAQIqABAAgRUACAJAiIAEASBGQAACkCEgAAFIEJAAAKQISAIAU\nAQkAQIqABAAgRUACAJAiIAEASBGQAACkCEgAAFIEJAAAKQISAIAUAQkAQIqABAAgRUACAJAiIAEA\nSBGQAACkCEgAAFIEJAAAKQISAIAUAQkAQIqABAAgRUACAJAiIAEASBGQAACkCEgAAFIEJAAAKQIS\nAIAUAQkAQEqp2Ww2W/mA8/PzMT8/Hy1+2Lbq6OiIRqPR7mO0VKlUil27dsXVq1dtvYMVdecIWxeJ\nrYuhaDtHXN96YGBgQ/etbPJZ1tTd3R0zMzOxuLjY6odum56enrhy5Uq7j9FSnZ2dMTAwEHNzc7be\nwYq6c4Sti8TWxVC0nSOub71RXsIGACBFQAIAkCIgAQBIEZAAAKQISAAAUgQkAAApAhIAgBQBCQBA\nioAEACBFQAIAkCIgAQBIEZAAAKQISAAAUgQkAAApAhIAgBQBCQBAioAEACBFQAIAkCIgAQBIEZAA\nAKQISAAAUgQkAAApAhIAgBQBCQBAioAEACBFQAIAkCIgAQBIEZAAAKQISAAAUgQkAAApAhIAgBQB\nCQBAioAEACBFQAIAkCIgAQBIEZAAAKQISAAAUgQkAAAplbUumJiYiDNnzkSz2YyRkZE4fPjwu143\nOTkZjz/+eHzxi1+MAwcObPpBAQC4Oaz6HchGoxFjY2Nx8uTJ+Pa3vx0vvfRSXLp06V2v+81vfhN3\n3nnnlh0UAICbw6oBOTk5GXv37o1arRblcjkOHjwYFy5ceMd1v//97+PAgQOxZ8+eLTsoAAA3h1Vf\nwq7X69Hf3798u1qtxuTk5Duuefnll+OrX/1qPPPMM+/43Ozs7IqP9fb2RqWy5ivnO0q5XI7Ozs52\nH6Ol3trY1jtbUXeOsHWR2LoYirZzxI1tvOo9S6XSml/gzJkzcf/990epVIpms7nic+fOnYvx8fEV\nHzty5EgcPXp0A0dlO6rVau0+Ai1g5+KwdXHYmtWsGpB9fX1x+fLl5dv1ej2q1eqKa/7+97/HE088\nERERb775Zly8eDE6Ojri7rvvjkOHDsXw8PCK63t7e2N6ejqWlpY26znc9Lq6umJhYaHdx2ipSqUS\ntVrN1jtcUXeOsHWR2LoYirZzxH+23tB9V/vkvn37YmpqKqanp6Ovry/Onz8fJ06cWHHNo48+uvzn\np59+Ou666664++67I+L6S97/HZwREZcuXYrFxcUNHXg7qlQqhXq+b7e0tFSo517UrYu2c4Sti8TW\nxVDUnTdq1YAsl8tx7NixOH36dDQajRgZGYnBwcE4e/ZsRESMjo625JAAANw81vzpyaGhoRgaGlrx\nsf8Vjg899NDmnAoAgJuWd6IBACBFQAIAkCIgAQBIEZAAAKQISAAAUgQkAAApAhIAgBQBCQBAioAE\nACBFQAIAkCIgAQBIEZAAAKQISAAAUgQkAAApAhIAgBQBCQBAioAEACBFQAIAkCIgAQBIEZAAAKQI\nSAAAUgQkAAApAhIAgBQBCQBAioAEACBFQAIAkCIgAQBIEZAAAKQISAAAUgQkAAApAhIAgBQBCQBA\nioAEACBFQAIAkCIgAQBIEZAAAKQISAAAUgQkAAApAhIAgBQBCQBASqnZbDZb+YDz8/MxPz8fLX7Y\nturo6IhGo9HuY7RUqVSKXbt2xdWrV229gxV15whbF4mti6FoO0dc33pgYGBD961s8lnW1N3dHTMz\nM7G4uNjqh26bnp6euHLlSruP0VKdnZ0xMDAQc3Nztt7BirpzhK2LxNbFULSdI65vvVFewgYAIEVA\nAgCQIiABAEgRkAAApAhIAABSBCQAACkCEgCAFAEJAECKgAQAIEVAAgCQIiABAEgRkAAApAhIAABS\nBCQAACkCEgCAFAEJAECKgAQAIEVAAgCQIiABAEgRkAAApAhIAABSBCQAACkCEgCAFAEJAECKgAQA\nIEVAAgCQIiABAEgRkAAApAhIAABSBCQAACkCEgCAFAEJAECKgAQAIEVAAgCQIiABAEgRkAAApAhI\nAABSBCQAACmV9Vw0MTERZ86ciWazGSMjI3H48OEVn3/xxRfj+eefj2azGV1dXXH8+PG47bbbtuTA\nAAC015oB2Wg0YmxsLB5++OGoVqvx2GOPxfDwcAwODi5fU6vV4tSpU9Hd3R0TExPxq1/9Kr7+9a9v\n6cEBAGiPNV/CnpycjL1790atVotyuRwHDx6MCxcurLjmfe97X3R3d0dExB133BH1en1rTgsAQNut\nGZD1ej36+/uXb1er1ZiZmfmf1//hD3+IoaGhzTkdAAA3nTVfwi6VSuv+Yq+++mr88Y9/jK997WsR\ncT0+Z2dnV1zT29sblcq6fvRyxyiXy9HZ2dnuY7TUWxvbemcr6s4Rti4SWxdD0XaOuLGN17xnX19f\nXL58efl2vV6ParX6jutef/31+OUvfxknT56Mnp6eiIg4d+5cjI+Pr7juyJEjcfTo0Q0fmO2lVqu1\n+wi0gJ2Lw9bFYWtWs2ZA7tu3L6ampmJ6ejr6+vri/PnzceLEiRXX/Pvf/45f/OIX8fnPfz5uueWW\n5Y8fOnQohoeHV1zb29sb09PTsbS0tElP4ebX1dUVCwsL7T5GS1UqlajVarbe4Yq6c4Sti8TWxVC0\nnSP+s/WG7rvWBeVyOY4dOxanT5+ORqMRIyMjMTg4GGfPno2IiNHR0RgfH4/5+fl47rnnIiKio6Mj\nvvGNb0S1Wn3X71ZeunQpFhcXN3Tg7ahSqRTq+b7d0tJSoZ57Ubcu2s4Rti4SWxdDUXfeqHW9+D00\nNPSOvxgzOjq6/OcHH3wwHnzwwc09GQAANyXvRAMAQIqABAAgRUACAJAiIAEASBGQAACkCEgAAFIE\nJAAAKQISAIAUAQkAQIqABAAgRUACAJAiIAEASBGQAACkCEgAAFIEJAAAKQISAIAUAQkAQIqABAAg\nRUACAJAiIAEASBGQAACkCEgAAFIEJAAAKQISAIAUAQkAQIqABAAgRUACAJAiIAEASBGQAACkCEgA\nAFIEJAAAKQISAIAUAQkAQIqABAAgRUACAJAiIAEASBGQAACkCEgAAFIEJAAAKQISAICUUrPZbLby\nAefn52N+fj5a/LBt1dHREY1Go93HaKlSqRS7du2Kq1ev2noHK+rOEbYuElsXQ9F2jri+9cDAwIbu\nW9nks6ypu7s7ZmZmYnFxsdUP3TY9PT1x5cqVdh+jpTo7O2NgYCDm5uZsvYMVdecIWxeJrYuhaDtH\nXN96o7yEDQBAioAEACBFQAIAkCIgAQBIEZAAAKQISAAAUgQkAAApAhIAgBQBCQBAioAEACBFQAIA\nkCIgAQBIEZAAAKQISAAAUgQkAAApAhIAgBQBCQBAioAEACBFQAIAkCIgAQBIEZAAAKQISAAAUgQk\nAAApAhIAgBQBCQBAioAEACBFQAIAkCIgAQBIEZAAAKQISAAAUgQkAAApAhIAgBQBCQBAioAEACBF\nQAIAkCIgAQBIEZAAAKQISAAAUgQkAAAplbUumJiYiDNnzkSz2YyRkZE4fPjwO64ZGxuLixcvRmdn\nZzz00ENx++23b8lhAQBov1W/A9loNGJsbCxOnjwZ3/72t+Oll16KS5curbjmlVdeiampqfjOd74T\nDzzwQDz77LNbemAAANpr1YCcnJyMvXv3Rq1Wi3K5HAcPHowLFy6suObll1+Oe++9NyIi7rjjjpif\nn4/Z2dmtOzEAAG216kvY9Xo9+vv7l29Xq9WYnJxccc3MzExUq9UV19Tr9ejt7Y16vf6OmOzt7Y1K\nZc1XzneUcrkcnZ2d7T5GS721sa13tqLuHGHrIrF1MRRt54gb23jVe5ZKpQ1/4YiIc+fOxfj4+IqP\n7d+/P77whS9ErVa7oa/Nza1er8dvf/vbOHTokK13MDsXh62Lw9bF8fat3/7NwPVYNSD7+vri8uXL\nKx7ovx9gtWsOHToUw8PDy5+7dOlSPPXUUzE7O5s+KNvL7OxsjI+Px/DwsK13MDsXh62Lw9bFcSNb\nr/ozkPv27YupqamYnp6OpaWlOH/+/IogjIgYHh6OP/3pTxER8dprr0V3d3f09vZGxPWXs/ft27f8\nz+DgYOpwAADcfFb9DmS5XI5jx47F6dOno9FoxMjISAwODsbZs2cjImJ0dDTuuuuumJiYiB/+8Iex\na9euePDBB1tycAAA2mPNn54cGhqKoaGhFR8bHR1dcfv48eObeyoAAG5a5e9973vfa9WDNZvN2LVr\nV3zgAx+Irq6uVj0sbWDrYrBzcdi6OGxdHDeydanZbDa36FwAAOxAW/ZLnrwFYnGstfWLL74Yzz//\nfDSbzejq6orjx4/Hbbfd1qbTslHr+Xc64vobEDz++OPxxS9+MQ4cONDiU7IZ1rP1q6++Gr/+9a/j\n2rVrsXv37jh16lQbTsqNWmvrubm5ePLJJ2N2djYajUZ84hOfiPvuu69Np2Wjnn766ZiYmIg9e/bE\nI4888q7XZJtsSwLyrbdAfPjhh6NarcZjjz0Ww8PDK/4W9tvfAvFvf/tbPPvss/H1r399K47DFlrP\n1rVaLU6dOhXd3d0xMTERv/rVr2y9zaxn57eu+81vfhN33nlnm07KjVrP1leuXFl+m9v+/v6Ym5tr\n44nZqPVs/cILL8Ttt98e999/f8zNzcWPfvSjuOeee6JcLrfx5GTdd9998dGPfjSeeuqpd/38Rpps\n1V/js1HeArE41rP1+973vuju7o6I61vX6/V2HJUbsJ6dIyJ+//vfx4EDB2LPnj1tOCWbYT1bv/TS\nS/HBD35w+Z3K7L09rWfrvr6+WFhYiIiIhYWF6OnpEY/b0P79+5f/O/xuNtJkWxKQ7/YWiDMzMyuu\n+V9vgcj2sp6t3+4Pf/jDO/5WPze/9excr9fj5Zdfjo985COtPh6baD1bT01NxZUrV+JnP/tZ/PSn\nP13+XcBsL+vZemRkJP75z3/G97///fjJT34Sn/vc51p9TFpgI022JQF5o2+ByPaR2frVV1+NP/7x\nj/HZz352C0/EVljPzmfOnIn7778/SqVS+Lt529d6tr527Vr84x//iC9/+cvxla98JcbHx+Nf//pX\nC07HZlrP1r/73e/itttui+9+97vxzW9+M5577rnl70hSbFvyM5A3+haIbB/r3fH111+PX/7yl3Hy\n5Mno6elp5RHZBOvZ+e9//3s88cQTERHx5ptvxsWLF6OjoyPuvvvulp6VG7Oerfv7+2P37t3R2dkZ\nnZ2dsX///nj99dfjlltuafVxuQHr2fq1116LT3/60xERyy93v/HGG/He9763pWdla22kybbkO5A3\n+haIbB/r2frf//53/OIXv4jPf/7z/gOzTa1n50cffXT5nwMHDsTx48fF4za03v///utf/xqNRiOu\nXr0ak5OT3qp2G1rP1rfeemv8+c9/jojr75v8xhtvRK1Wa8dx2UIbabIt+z2Qb/1qgLfeAvFTn/rU\nirdAjIh47rnn4uLFi8tvgbhv376tOApbbK2tn3nmmbhw4cLyz9p0dHTEN77xjXYemQ1Yz7/Tb3n6\n6afjrrvu8mt8tqn1bP3888/H//3f/0WpVIqRkZH42Mc+1s4js0FrbT03NxfPPPNMXL58OZrNZhw+\nfDjuueeeNp+arCeeeCL+8pe/xJtvvhm9vb3xmc98JhqNRkRsvMn8InEAAFK25CVsAAB2LgEJAECK\ngAQAIEVAAgCQIiABAEgRkAAApAhIAABS/h/62YH95FMTSgAAAABJRU5ErkJggg==\n", |
513 | 540 | "text": [ |
514 | | - "<matplotlib.figure.Figure at 0x10616ffd0>" |
| 541 | + "<matplotlib.figure.Figure at 0x10c214350>" |
515 | 542 | ] |
516 | 543 | }, |
517 | 544 | { |
518 | 545 | "metadata": {}, |
519 | 546 | "output_type": "pyout", |
520 | | - "prompt_number": 15, |
| 547 | + "prompt_number": 8, |
521 | 548 | "text": [ |
522 | | - "<ggplot: (272343697)>" |
| 549 | + "<ggplot: (281151189)>" |
523 | 550 | ] |
524 | 551 | } |
525 | 552 | ], |
526 | | - "prompt_number": 15 |
| 553 | + "prompt_number": 8 |
527 | 554 | }, |
528 | 555 | { |
529 | 556 | "cell_type": "markdown", |
|
547 | 574 | { |
548 | 575 | "metadata": {}, |
549 | 576 | "output_type": "pyout", |
550 | | - "prompt_number": 19, |
| 577 | + "prompt_number": 9, |
551 | 578 | "text": [ |
552 | 579 | "{'y': 'price', 'x': 'date'}" |
553 | 580 | ] |
554 | 581 | } |
555 | 582 | ], |
556 | | - "prompt_number": 19 |
| 583 | + "prompt_number": 9 |
557 | 584 | }, |
558 | 585 | { |
559 | 586 | "cell_type": "code", |
|
568 | 595 | { |
569 | 596 | "metadata": {}, |
570 | 597 | "output_type": "pyout", |
571 | | - "prompt_number": 26, |
| 598 | + "prompt_number": 10, |
572 | 599 | "text": [ |
573 | 600 | "{u'y': 'price', u'x': 'date'}" |
574 | 601 | ] |
575 | 602 | } |
576 | 603 | ], |
577 | | - "prompt_number": 26 |
| 604 | + "prompt_number": 10 |
578 | 605 | }, |
579 | 606 | { |
580 | 607 | "cell_type": "code", |
|
589 | 616 | { |
590 | 617 | "metadata": {}, |
591 | 618 | "output_type": "pyout", |
592 | | - "prompt_number": 27, |
| 619 | + "prompt_number": 11, |
593 | 620 | "text": [ |
594 | 621 | "{u'y': 'price', u'x': 'date', u'color': 'name'}" |
595 | 622 | ] |
596 | 623 | } |
597 | 624 | ], |
598 | | - "prompt_number": 27 |
| 625 | + "prompt_number": 11 |
599 | 626 | }, |
600 | 627 | { |
601 | 628 | "cell_type": "code", |
|
610 | 637 | { |
611 | 638 | "metadata": {}, |
612 | 639 | "output_type": "pyout", |
613 | | - "prompt_number": 28, |
| 640 | + "prompt_number": 12, |
614 | 641 | "text": [ |
615 | 642 | "{'color': 'date * price', 'y': 'price', 'shape': 'factor(name)', 'x': 'date'}" |
616 | 643 | ] |
617 | 644 | } |
618 | 645 | ], |
619 | | - "prompt_number": 28 |
| 646 | + "prompt_number": 12 |
620 | 647 | }, |
621 | 648 | { |
622 | 649 | "cell_type": "markdown", |
|
0 commit comments