Skip to content

Commit bdc69b6

Browse files
committed
DOC: fogot doctests in python files.
1 parent 07b4121 commit bdc69b6

File tree

2 files changed

+16
-16
lines changed

2 files changed

+16
-16
lines changed

sklearn/svm/classes.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -150,8 +150,8 @@ class SVC(DenseBaseLibSVM, ClassifierMixin):
150150
>>> from sklearn.svm import SVC
151151
>>> clf = SVC()
152152
>>> clf.fit(X, y)
153-
SVC(C=1.0, coef0=0.0, degree=3, gamma=0.5, kernel='rbf', probability=False,
154-
shrinking=True, tol=0.001)
153+
SVC(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma=0.5, kernel='rbf',
154+
probability=False, shrinking=True, tol=0.001)
155155
>>> print clf.predict([[-0.8, -1]])
156156
[ 1.]
157157
@@ -254,8 +254,8 @@ class NuSVC(DenseBaseLibSVM, ClassifierMixin):
254254
>>> from sklearn.svm import NuSVC
255255
>>> clf = NuSVC()
256256
>>> clf.fit(X, y)
257-
NuSVC(coef0=0.0, degree=3, gamma=0.5, kernel='rbf', nu=0.5, probability=False,
258-
shrinking=True, tol=0.001)
257+
NuSVC(cache_size=200, coef0=0.0, degree=3, gamma=0.5, kernel='rbf', nu=0.5,
258+
probability=False, shrinking=True, tol=0.001)
259259
>>> print clf.predict([[-0.8, -1]])
260260
[ 1.]
261261
@@ -346,8 +346,8 @@ class SVR(DenseBaseLibSVM, RegressorMixin):
346346
>>> X = np.random.randn(n_samples, n_features)
347347
>>> clf = SVR(C=1.0, epsilon=0.2)
348348
>>> clf.fit(X, y)
349-
SVR(C=1.0, coef0=0.0, degree=3, epsilon=0.2, gamma=0.2, kernel='rbf',
350-
probability=False, shrinking=True, tol=0.001)
349+
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma=0.2,
350+
kernel='rbf', probability=False, shrinking=True, tol=0.001)
351351
352352
See also
353353
--------
@@ -461,8 +461,8 @@ class NuSVR(DenseBaseLibSVM, RegressorMixin):
461461
>>> X = np.random.randn(n_samples, n_features)
462462
>>> clf = NuSVR(C=1.0, nu=0.1)
463463
>>> clf.fit(X, y)
464-
NuSVR(C=1.0, coef0=0.0, degree=3, gamma=0.2, kernel='rbf', nu=0.1,
465-
probability=False, shrinking=True, tol=0.001)
464+
NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma=0.2, kernel='rbf',
465+
nu=0.1, probability=False, shrinking=True, tol=0.001)
466466
467467
See also
468468
--------

sklearn/svm/sparse/classes.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -23,8 +23,8 @@ class SVC(SparseBaseLibSVM, ClassifierMixin):
2323
>>> from sklearn.svm.sparse import SVC
2424
>>> clf = SVC()
2525
>>> clf.fit(X, y)
26-
SVC(C=1.0, coef0=0.0, degree=3, gamma=0.5, kernel='rbf', probability=False,
27-
shrinking=True, tol=0.001)
26+
SVC(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma=0.5, kernel='rbf',
27+
probability=False, shrinking=True, tol=0.001)
2828
>>> print clf.predict([[-0.8, -1]])
2929
[ 1.]
3030
"""
@@ -57,8 +57,8 @@ class NuSVC(SparseBaseLibSVM, ClassifierMixin):
5757
>>> from sklearn.svm.sparse import NuSVC
5858
>>> clf = NuSVC()
5959
>>> clf.fit(X, y)
60-
NuSVC(coef0=0.0, degree=3, gamma=0.5, kernel='rbf', nu=0.5, probability=False,
61-
shrinking=True, tol=0.001)
60+
NuSVC(cache_size=200, coef0=0.0, degree=3, gamma=0.5, kernel='rbf', nu=0.5,
61+
probability=False, shrinking=True, tol=0.001)
6262
>>> print clf.predict([[-0.8, -1]])
6363
[ 1.]
6464
"""
@@ -93,8 +93,8 @@ class SVR(SparseBaseLibSVM, RegressorMixin):
9393
>>> X = np.random.randn(n_samples, n_features)
9494
>>> clf = SVR(C=1.0, epsilon=0.2)
9595
>>> clf.fit(X, y)
96-
SVR(C=1.0, coef0=0.0, degree=3, epsilon=0.2, gamma=0.2, kernel='rbf', nu=0.5,
97-
probability=False, shrinking=True, tol=0.001)
96+
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma=0.2,
97+
kernel='rbf', nu=0.5, probability=False, shrinking=True, tol=0.001)
9898
"""
9999

100100
def __init__(self, kernel='rbf', degree=3, gamma=0.0, coef0=0.0,
@@ -127,8 +127,8 @@ class NuSVR(SparseBaseLibSVM, RegressorMixin):
127127
>>> X = np.random.randn(n_samples, n_features)
128128
>>> clf = NuSVR(nu=0.1, C=1.0)
129129
>>> clf.fit(X, y)
130-
NuSVR(C=1.0, coef0=0.0, degree=3, epsilon=0.1, gamma=0.2, kernel='rbf',
131-
nu=0.1, probability=False, shrinking=True, tol=0.001)
130+
NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma=0.2,
131+
kernel='rbf', nu=0.1, probability=False, shrinking=True, tol=0.001)
132132
"""
133133

134134
def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3,

0 commit comments

Comments
 (0)