| 
 | 1 | +"""  | 
 | 2 | +2017/12/02  | 
 | 3 | +"""  | 
 | 4 | + | 
 | 5 | +import tensorflow as tf  | 
 | 6 | +import numpy as np  | 
 | 7 | + | 
 | 8 | + | 
 | 9 | +class SqueezeNet(object):  | 
 | 10 | +    def __init__(self, inputs, nb_classes=1000, is_training=True):  | 
 | 11 | +        # conv1  | 
 | 12 | +        net = tf.layers.conv2d(inputs, 96, [7, 7], strides=[2, 2],  | 
 | 13 | +                                 padding="SAME", activation=tf.nn.relu,  | 
 | 14 | +                                 name="conv1")  | 
 | 15 | +        # maxpool1  | 
 | 16 | +        net = tf.layers.max_pooling2d(net, [3, 3], strides=[2, 2],  | 
 | 17 | +                                      name="maxpool1")  | 
 | 18 | +        # fire2  | 
 | 19 | +        net = self._fire(net, 16, 64, "fire2")  | 
 | 20 | +        # fire3  | 
 | 21 | +        net = self._fire(net, 16, 64, "fire3")  | 
 | 22 | +        # fire4  | 
 | 23 | +        net = self._fire(net, 32, 128, "fire4")  | 
 | 24 | +        # maxpool4  | 
 | 25 | +        net = tf.layers.max_pooling2d(net, [3, 3], strides=[2, 2],  | 
 | 26 | +                                      name="maxpool4")  | 
 | 27 | +        # fire5  | 
 | 28 | +        net = self._fire(net, 32, 128, "fire5")  | 
 | 29 | +        # fire6  | 
 | 30 | +        net = self._fire(net, 48, 192, "fire6")  | 
 | 31 | +        # fire7  | 
 | 32 | +        net = self._fire(net, 48, 192, "fire7")  | 
 | 33 | +        # fire8  | 
 | 34 | +        net = self._fire(net, 64, 256, "fire8")  | 
 | 35 | +        # maxpool8  | 
 | 36 | +        net = tf.layers.max_pooling2d(net, [3, 3], strides=[2, 2],  | 
 | 37 | +                                      name="maxpool8")  | 
 | 38 | +        # fire9  | 
 | 39 | +        net = self._fire(net, 64, 256, "fire9")  | 
 | 40 | +        # conv10  | 
 | 41 | +        net = tf.layers.conv2d(net, 1000, [1, 1], strides=[1, 1],  | 
 | 42 | +                               padding="SAME", activation=tf.nn.relu,  | 
 | 43 | +                               name="conv10")  | 
 | 44 | +        # avgpool10  | 
 | 45 | +        net = tf.layers.average_pooling2d(net, [13, 13], strides=[1, 1],  | 
 | 46 | +                                          name="avgpool10")  | 
 | 47 | +        # squeeze the axis  | 
 | 48 | +        net = tf.squeeze(net, axis=[1, 2])  | 
 | 49 | + | 
 | 50 | +        self.logits = net  | 
 | 51 | +        self.prediction = tf.nn.softmax(net)  | 
 | 52 | + | 
 | 53 | + | 
 | 54 | +    def _fire(self, inputs, squeeze_depth, expand_depth, scope):  | 
 | 55 | +        with tf.variable_scope(scope):  | 
 | 56 | +            squeeze = tf.layers.conv2d(inputs, squeeze_depth, [1, 1],  | 
 | 57 | +                                       strides=[1, 1], padding="SAME",  | 
 | 58 | +                                       activation=tf.nn.relu, name="squeeze")  | 
 | 59 | +            # squeeze  | 
 | 60 | +            expand_1x1 = tf.layers.conv2d(squeeze, expand_depth, [1, 1],  | 
 | 61 | +                                          strides=[1, 1], padding="SAME",  | 
 | 62 | +                                          activation=tf.nn.relu, name="expand_1x1")  | 
 | 63 | +            expand_3x3 = tf.layers.conv2d(squeeze, expand_depth, [3, 3],  | 
 | 64 | +                                          strides=[1, 1], padding="SAME",  | 
 | 65 | +                                          activation=tf.nn.relu, name="expand_3x3")  | 
 | 66 | +            return tf.concat([expand_1x1, expand_3x3], axis=3)  | 
 | 67 | + | 
 | 68 | + | 
 | 69 | +if __name__ == "__main__":  | 
 | 70 | +    inputs = tf.random_normal([32, 224, 224, 3])  | 
 | 71 | +    net = SqueezeNet(inputs)  | 
 | 72 | +    print(net.prediction)  | 
0 commit comments