-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlazy_rbst.hpp
309 lines (281 loc) · 9.52 KB
/
lazy_rbst.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#pragma once
#include <array>
#include <cassert>
#include <chrono>
#include <utility>
#include <vector>
// Lazy randomized binary search tree
template <int LEN, class S, S (*op)(S, S), class F, S (*reversal)(S), S (*mapping)(F, S),
F (*composition)(F, F), F (*id)()>
struct lazy_rbst {
// Do your RuBeSTy! ⌒°( ・ω・)°⌒
inline uint32_t _rand() { // XorShift
static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
uint32_t t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
struct Node {
Node *l, *r;
S val, sum;
F lz;
bool is_reversed;
int sz;
Node(const S &v)
: l(nullptr), r(nullptr), val(v), sum(v), lz(id()), is_reversed(false), sz(1) {}
Node() : l(nullptr), r(nullptr), lz(id()), is_reversed(false), sz(0) {}
template <class OStream> friend OStream &operator<<(OStream &os, const Node &n) {
os << '[';
if (n.l) os << *(n.l) << ',';
os << n.val << ',';
if (n.r) os << *(n.r);
return os << ']';
}
};
using Nptr = Node *;
std::array<Node, LEN> data;
int d_ptr;
int size(Nptr t) const { return t != nullptr ? t->sz : 0; }
lazy_rbst() : d_ptr(0) {}
protected:
Nptr update(Nptr t) {
t->sz = 1;
t->sum = t->val;
if (t->l) {
t->sz += t->l->sz;
t->sum = op(t->l->sum, t->sum);
}
if (t->r) {
t->sz += t->r->sz;
t->sum = op(t->sum, t->r->sum);
}
return t;
}
void all_apply(Nptr t, F f) {
t->val = mapping(f, t->val);
t->sum = mapping(f, t->sum);
t->lz = composition(f, t->lz);
}
void _toggle(Nptr t) {
auto tmp = t->l;
t->l = t->r, t->r = tmp;
t->sum = reversal(t->sum);
t->is_reversed ^= true;
}
void push(Nptr &t) {
_duplicate_node(t);
if (t->lz != id()) {
if (t->l) {
_duplicate_node(t->l);
all_apply(t->l, t->lz);
}
if (t->r) {
_duplicate_node(t->r);
all_apply(t->r, t->lz);
}
t->lz = id();
}
if (t->is_reversed) {
if (t->l) _toggle(t->l);
if (t->r) _toggle(t->r);
t->is_reversed = false;
}
}
virtual void _duplicate_node(Nptr &) {}
Nptr _make_node(const S &val) {
if (d_ptr >= LEN) throw;
return &(data[d_ptr++] = Node(val));
}
public:
Nptr new_tree() { return nullptr; } // 新たな木を作成
int mem_used() const { return d_ptr; }
bool empty(Nptr t) const { return t == nullptr; }
// lとrをrootとする木同士を結合して,新たなrootを返す
Nptr merge(Nptr l, Nptr r) {
if (l == nullptr or r == nullptr) return l != nullptr ? l : r;
if (_rand() % uint32_t(l->sz + r->sz) < uint32_t(l->sz)) {
push(l);
l->r = merge(l->r, r);
return update(l);
} else {
push(r);
r->l = merge(l, r->l);
return update(r);
}
}
// [0, k)の木と[k, root->size())の木に分けて各root
// (部分木の要素数が0ならnullptr)を返す
std::pair<Nptr, Nptr> split(Nptr &root, int k) { // rootの子孫からあとk個欲しい
if (root == nullptr) return std::make_pair(nullptr, nullptr);
push(root);
if (k <= size(root->l)) { // leftからk個拾える
auto p = split(root->l, k);
root->l = p.second;
return std::make_pair(p.first, update(root));
} else {
auto p = split(root->r, k - size(root->l) - 1);
root->r = p.first;
return std::make_pair(update(root), p.second);
}
}
// 0-indexedでarray[pos]の手前に新たな要素 x を挿入する
void insert(Nptr &root, int pos, const S &x) {
auto p = split(root, pos);
root = merge(p.first, merge(_make_node(x), p.second));
}
// 0-indexedでarray[pos]を削除する(先頭からpos+1個目の要素)
void erase(Nptr &root, int pos) {
auto p = split(root, pos);
auto p2 = split(p.second, 1);
root = merge(p.first, p2.second);
}
// 1点更新 array[pos].valにupdvalを入れる
void set(Nptr &root, int pos, const S &x) {
auto p = split(root, pos);
auto p2 = split(p.second, 1);
_duplicate_node(p2.first);
*p2.first = Node(x);
root = merge(p.first, merge(p2.first, p2.second));
}
// 遅延評価を利用した範囲更新 [l, r)
void apply(Nptr &root, int l, int r, const F &f) {
if (l == r) return;
auto p = split(root, l);
auto p2 = split(p.second, r - l);
all_apply(p2.first, f);
root = merge(p.first, merge(p2.first, p2.second));
}
S prod(Nptr &root, int l, int r) {
assert(l < r);
auto p = split(root, l);
auto p2 = split(p.second, r - l);
if (p2.first != nullptr) push(p2.first);
S res = p2.first->sum;
root = merge(p.first, merge(p2.first, p2.second));
return res;
}
// array[pos].valを取得する
S get(Nptr &root, int pos) { return prod(root, pos, pos + 1); }
template <bool (*g)(S)> int max_right(Nptr root, const S &e) {
return max_right(root, e, [](S x) { return g(x); });
}
template <class G> int max_right(Nptr root, const S &e, G g) {
assert(g(e));
if (root == nullptr) return 0;
push(root);
Nptr now = root;
S prod_now = e;
int sz = 0;
while (true) {
if (now->l != nullptr) {
push(now->l);
auto pl = op(prod_now, now->l->sum);
if (g(pl)) {
prod_now = pl;
sz += now->l->sz;
} else {
now = now->l;
continue;
}
}
auto pl = op(prod_now, now->val);
if (!g(pl)) return sz;
prod_now = pl, sz++;
if (now->r == nullptr) return sz;
push(now->r);
now = now->r;
}
}
template <bool (*g)(S)> int min_left(Nptr root, const S &e) {
return min_left(root, e, [](S x) { return g(x); });
}
template <class G> int min_left(Nptr root, const S &e, G g) {
assert(g(e));
if (root == nullptr) return 0;
push(root);
Nptr now = root;
S prod_now = e;
int sz = size(root);
while (true) {
if (now->r != nullptr) {
push(now->r);
auto pr = op(now->r->sum, prod_now);
if (g(pr)) {
prod_now = pr;
sz -= now->r->sz;
} else {
now = now->r;
continue;
}
}
auto pr = op(now->val, prod_now);
if (!g(pr)) return sz;
prod_now = pr, sz--;
if (now->l == nullptr) return sz;
push(now->l);
now = now->l;
}
}
void reverse(Nptr &root) { _duplicate_node(root), _toggle(root); }
void reverse(Nptr &root, int l, int r) {
auto p2 = split(root, r);
auto p1 = split(p2.first, l);
reverse(p1.second);
root = merge(merge(p1.first, p1.second), p2.second);
}
// データを壊して新規にinitの内容を詰める
void assign(Nptr &root, const std::vector<S> &init) {
int N = init.size();
root = N ? _assign_range(0, N, init) : new_tree();
}
Nptr _assign_range(int l, int r, const std::vector<S> &init) {
if (r - l == 1) {
Nptr t = _make_node(init[l]);
return update(t);
}
return merge(_assign_range(l, (l + r) / 2, init), _assign_range((l + r) / 2, r, init));
}
// データをvecへ書き出し
void dump(Nptr &t, std::vector<S> &vec) {
if (t == nullptr) return;
push(t);
dump(t->l, vec);
vec.push_back(t->val);
dump(t->r, vec);
}
// gc
void re_alloc(Nptr &root) {
std::vector<S> mem;
dump(root, mem);
d_ptr = 0;
assign(root, mem);
}
};
// Persistent lazy randomized binary search tree
// Verified: https://atcoder.jp/contests/arc030/tasks/arc030_4
// CAUTION: https://yosupo.hatenablog.com/entry/2015/10/29/222536
template <int LEN, class S, S (*op)(S, S), class F, S (*reversal)(S), S (*mapping)(F, S),
F (*composition)(F, F), F (*id)()>
struct persistent_lazy_rbst : lazy_rbst<LEN, S, op, F, reversal, mapping, composition, id> {
using RBST = lazy_rbst<LEN, S, op, F, reversal, mapping, composition, id>;
using Node = typename RBST::Node;
using Nptr = typename RBST::Nptr;
persistent_lazy_rbst() : RBST() {}
protected:
void _duplicate_node(Nptr &t) override {
if (t == nullptr) return;
if (RBST::d_ptr >= LEN) throw;
t = &(RBST::data[RBST::d_ptr++] = *t);
}
public:
void copy(Nptr &root, int l, int d, int target_l) { // [target_l, )に[l, l+d)の値を入れる
auto p1 = RBST::split(root, l);
auto p2 = RBST::split(p1.second, d);
root = RBST::merge(p1.first, RBST::merge(p2.first, p2.second));
auto p3 = RBST::split(root, target_l);
auto p4 = RBST::split(p3.second, d);
root = RBST::merge(p3.first, RBST::merge(p2.first, p4.second));
}
};