-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathbinary_lifting.hpp
127 lines (106 loc) · 3.61 KB
/
binary_lifting.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#pragma once
#include <cassert>
#include <vector>
// Binary lifting (Doubling) on functional graphs
template <class S, S (*op)(S, S)> class binary_lifting {
int n = 0;
std::vector<std::vector<int>> _nexts;
std::vector<std::vector<S>> _prods;
void build_next() {
std::vector<int> _next(n);
std::vector<S> _prod(n);
for (int i = 0; i < n; ++i) {
if (int j = _nexts.back().at(i); isin(j)) {
_next.at(i) = _nexts.back().at(j);
_prod.at(i) = op(_prods.back().at(i), _prods.back().at(j));
} else {
_next.at(i) = j;
_prod.at(i) = _prods.back().at(i);
}
}
_nexts.emplace_back(std::move(_next));
_prods.emplace_back(std::move(_prod));
}
inline bool isin(int i) const noexcept { return 0 <= i and i < n; }
public:
// (up to) 2^d steps from `s`
// Complexity: O(d) (Already precalculated) / O(nd) (First time)
int pow_next(int s, int d) {
assert(isin(s));
while (int(_nexts.size()) <= d) build_next();
return _nexts.at(d).at(s);
}
// Product of (up to) 2^d elements from `s`
const S &pow_prod(int s, int d) {
assert(isin(s));
while (int(_nexts.size()) <= d) build_next();
return _prods.at(d).at(s);
}
binary_lifting() = default;
binary_lifting(const std::vector<int> &g, const std::vector<S> &w)
: n(g.size()), _nexts(1, g), _prods(1, w) {
assert(g.size() == w.size());
}
// (up to) k steps from `s`
template <class Int> int kth_next(int s, Int k) {
for (int d = 0; k > 0 and isin(s); ++d, k >>= 1) {
if (k & 1) s = pow_next(s, d);
}
return s;
}
// Product of (up to) `len` elements from `s`
template <class Int> S prod(int s, Int len) {
assert(isin(s));
assert(len > 0);
int d = 0;
while (!(len & 1)) ++d, len /= 2;
S ret = pow_prod(s, d);
s = pow_next(s, d);
for (++d, len /= 2; len and isin(s); ++d, len /= 2) {
if (len & 1) {
ret = op(ret, pow_prod(s, d));
s = pow_next(s, d);
}
}
return ret;
}
// `start` から出発して「`left_goal` 以下または `right_goal` 以上」に到達するまでのステップ数
// 単調性が必要
int distance_monotone(int start, int left_goal, int right_goal) {
assert(isin(start));
if (start <= left_goal or right_goal <= start) return 0;
int d = 0;
while (left_goal < pow_next(start, d) and pow_next(start, d) < right_goal) {
if ((1 << d) >= n) return -1;
++d;
}
int ret = 0, cur = start;
for (--d; d >= 0; --d) {
if (int nxt = pow_next(cur, d); left_goal < nxt and nxt < right_goal) {
ret += 1 << d, cur = nxt;
}
}
return ret + 1;
}
template <class F> long long max_length(const int s, F f, const int maxd = 60) {
assert(isin(s));
int d = 0;
while (d <= maxd and f(pow_prod(s, d))) {
if (!isin(pow_next(s, d))) return 1LL << maxd;
++d;
}
if (d > maxd) return 1LL << maxd;
--d;
int cur = pow_next(s, d);
long long len = 1LL << d;
S p = pow_prod(s, d);
for (int e = d - 1; e >= 0; --e) {
if (S nextp = op(p, pow_prod(cur, e)); f(nextp)) {
std::swap(p, nextp);
cur = pow_next(cur, e);
len += 1LL << e;
}
}
return len;
}
};