@@ -259,10 +259,10 @@ def _fit(self, X, y, max_samples=None, max_depth=None, sample_weight=None):
259259 The target values (class labels in classification, real numbers in
260260 regression).
261261
262- max_samples : int or float, optional ( default=None)
262+ max_samples : int or float, default=None
263263 Argument to use instead of self.max_samples.
264264
265- max_depth : int, optional ( default=None)
265+ max_depth : int, default=None
266266 Override value used when constructing base estimator. Only
267267 supported if the base estimator has a max_depth parameter.
268268
@@ -456,57 +456,57 @@ class BaggingClassifier(ClassifierMixin, BaseBagging):
456456
457457 Parameters
458458 ----------
459- base_estimator : object or None, optional ( default=None)
459+ base_estimator : object, default=None
460460 The base estimator to fit on random subsets of the dataset.
461461 If None, then the base estimator is a decision tree.
462462
463- n_estimators : int, optional ( default=10)
463+ n_estimators : int, default=10
464464 The number of base estimators in the ensemble.
465465
466- max_samples : int or float, optional ( default=1.0)
466+ max_samples : int or float, default=1.0
467467 The number of samples to draw from X to train each base estimator.
468468
469469 - If int, then draw `max_samples` samples.
470470 - If float, then draw `max_samples * X.shape[0]` samples.
471471
472- max_features : int or float, optional ( default=1.0)
472+ max_features : int or float, default=1.0
473473 The number of features to draw from X to train each base estimator.
474474
475475 - If int, then draw `max_features` features.
476476 - If float, then draw `max_features * X.shape[1]` features.
477477
478- bootstrap : boolean, optional ( default=True)
478+ bootstrap : bool, default=True
479479 Whether samples are drawn with replacement. If False, sampling
480480 without replacement is performed.
481481
482- bootstrap_features : boolean, optional ( default=False)
482+ bootstrap_features : bool, default=False
483483 Whether features are drawn with replacement.
484484
485- oob_score : bool, optional ( default=False)
485+ oob_score : bool, default=False
486486 Whether to use out-of-bag samples to estimate
487487 the generalization error.
488488
489- warm_start : bool, optional ( default=False)
489+ warm_start : bool, default=False
490490 When set to True, reuse the solution of the previous call to fit
491491 and add more estimators to the ensemble, otherwise, just fit
492492 a whole new ensemble. See :term:`the Glossary <warm_start>`.
493493
494494 .. versionadded:: 0.17
495495 *warm_start* constructor parameter.
496496
497- n_jobs : int or None, optional ( default=None)
497+ n_jobs : int, default=None
498498 The number of jobs to run in parallel for both :meth:`fit` and
499499 :meth:`predict`. ``None`` means 1 unless in a
500500 :obj:`joblib.parallel_backend` context. ``-1`` means using all
501501 processors. See :term:`Glossary <n_jobs>` for more details.
502502
503- random_state : int, RandomState instance or None, optional ( default=None)
503+ random_state : int, RandomState instance, default=None
504504 If int, random_state is the seed used by the random number generator;
505505 If RandomState instance, random_state is the random number generator;
506506 If None, the random number generator is the RandomState instance used
507507 by `np.random`.
508508
509- verbose : int, optional ( default=0)
509+ verbose : int, default=0
510510 Controls the verbosity when fitting and predicting.
511511
512512 Attributes
@@ -527,7 +527,7 @@ class BaggingClassifier(ClassifierMixin, BaseBagging):
527527 estimators_features_ : list of arrays
528528 The subset of drawn features for each base estimator.
529529
530- classes_ : array of shape (n_classes,)
530+ classes_ : ndarray of shape (n_classes,)
531531 The classes labels.
532532
533533 n_classes_ : int or list
@@ -537,7 +537,7 @@ class BaggingClassifier(ClassifierMixin, BaseBagging):
537537 Score of the training dataset obtained using an out-of-bag estimate.
538538 This attribute exists only when ``oob_score`` is True.
539539
540- oob_decision_function_ : array of shape (n_samples, n_classes)
540+ oob_decision_function_ : ndarray of shape (n_samples, n_classes)
541541 Decision function computed with out-of-bag estimate on the training
542542 set. If n_estimators is small it might be possible that a data point
543543 was never left out during the bootstrap. In this case,
@@ -689,7 +689,7 @@ def predict_proba(self, X):
689689
690690 Returns
691691 -------
692- p : array of shape (n_samples, n_classes)
692+ p : ndarray of shape (n_samples, n_classes)
693693 The class probabilities of the input samples. The order of the
694694 classes corresponds to that in the attribute :term:`classes_`.
695695 """
@@ -739,7 +739,7 @@ def predict_log_proba(self, X):
739739
740740 Returns
741741 -------
742- p : array of shape (n_samples, n_classes)
742+ p : ndarray of shape (n_samples, n_classes)
743743 The class log-probabilities of the input samples. The order of the
744744 classes corresponds to that in the attribute :term:`classes_`.
745745 """
@@ -794,7 +794,7 @@ def decision_function(self, X):
794794
795795 Returns
796796 -------
797- score : array, shape = [ n_samples, k]
797+ score : ndarray of shape ( n_samples, k)
798798 The decision function of the input samples. The columns correspond
799799 to the classes in sorted order, as they appear in the attribute
800800 ``classes_``. Regression and binary classification are special
@@ -858,54 +858,54 @@ class BaggingRegressor(RegressorMixin, BaseBagging):
858858
859859 Parameters
860860 ----------
861- base_estimator : object or None, optional ( default=None)
861+ base_estimator : object, default=None
862862 The base estimator to fit on random subsets of the dataset.
863863 If None, then the base estimator is a decision tree.
864864
865- n_estimators : int, optional ( default=10)
865+ n_estimators : int, default=10
866866 The number of base estimators in the ensemble.
867867
868- max_samples : int or float, optional ( default=1.0)
868+ max_samples : int or float, default=1.0
869869 The number of samples to draw from X to train each base estimator.
870870
871871 - If int, then draw `max_samples` samples.
872872 - If float, then draw `max_samples * X.shape[0]` samples.
873873
874- max_features : int or float, optional ( default=1.0)
874+ max_features : int or float, default=1.0
875875 The number of features to draw from X to train each base estimator.
876876
877877 - If int, then draw `max_features` features.
878878 - If float, then draw `max_features * X.shape[1]` features.
879879
880- bootstrap : boolean, optional ( default=True)
880+ bootstrap : bool, default=True
881881 Whether samples are drawn with replacement. If False, sampling
882882 without replacement is performed.
883883
884- bootstrap_features : boolean, optional ( default=False)
884+ bootstrap_features : bool, default=False
885885 Whether features are drawn with replacement.
886886
887- oob_score : bool
887+ oob_score : bool, default=False
888888 Whether to use out-of-bag samples to estimate
889889 the generalization error.
890890
891- warm_start : bool, optional ( default=False)
891+ warm_start : bool, default=False
892892 When set to True, reuse the solution of the previous call to fit
893893 and add more estimators to the ensemble, otherwise, just fit
894894 a whole new ensemble. See :term:`the Glossary <warm_start>`.
895895
896- n_jobs : int or None, optional ( default=None)
896+ n_jobs : int, default=None
897897 The number of jobs to run in parallel for both :meth:`fit` and
898898 :meth:`predict`. ``None`` means 1 unless in a
899899 :obj:`joblib.parallel_backend` context. ``-1`` means using all
900900 processors. See :term:`Glossary <n_jobs>` for more details.
901901
902- random_state : int, RandomState instance or None, optional ( default=None)
902+ random_state : int, RandomState instance, default=None
903903 If int, random_state is the seed used by the random number generator;
904904 If RandomState instance, random_state is the random number generator;
905905 If None, the random number generator is the RandomState instance used
906906 by `np.random`.
907907
908- verbose : int, optional ( default=0)
908+ verbose : int, default=0
909909 Controls the verbosity when fitting and predicting.
910910
911911 Attributes
0 commit comments