This repository contains all the code examples as IPython notebooks.
- 1.1. What is IPython?
- 1.2. What's new in IPython 3.0?
- 1.3. Installing Python with Anaconda
- 1.4. Introducing the notebook
- 1.5. A crash course on Python
- 1.6. Ten IPython essentials
- 1.7. Summary
- 2.1. Exploring a dataset in the notebook
- 2.2. Manipulating data
- 2.3. Complex operations
- 2.4. Summary
- 3.1. A primer to vector computing
- 3.2. Creating and loading arrays
- 3.3. Basic array manipulations
- 3.4. Computing with NumPy arrays
- 3.5. Summary
- 4.1. Choosing a plotting backend
- 4.2. matplotlib and seaborn essentials
- 4.3. Image processing
- 4.4. Further plotting and visualization libraries
- 4.5. Summary
- 5.1. Accelerating Python code with Numba
- 5.2. Writing C in Python with Cython
- 5.3. Distributing tasks on several cores with IPython.parallel
- 5.4. Further high-performance computing techniques
- 5.5. Summary