Skip to content

Commit d5bfff3

Browse files
franslarssonrth
andauthored
DOC Fix doc of defaults in sklearn.linear_model._omp.py (scikit-learn#18100)
Co-authored-by: Roman Yurchak <[email protected]>
1 parent 1dedc7e commit d5bfff3

File tree

1 file changed

+79
-79
lines changed

1 file changed

+79
-79
lines changed

sklearn/linear_model/_omp.py

Lines changed: 79 additions & 79 deletions
Original file line numberDiff line numberDiff line change
@@ -30,37 +30,37 @@ def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True,
3030
3131
Parameters
3232
----------
33-
X : array, shape (n_samples, n_features)
33+
X : ndarray of shape (n_samples, n_features)
3434
Input dictionary. Columns are assumed to have unit norm.
3535
36-
y : array, shape (n_samples,)
37-
Input targets
36+
y : ndarray of shape (n_samples,)
37+
Input targets.
3838
3939
n_nonzero_coefs : int
40-
Targeted number of non-zero elements
40+
Targeted number of non-zero elements.
4141
42-
tol : float
42+
tol : float, default=None
4343
Targeted squared error, if not None overrides n_nonzero_coefs.
4444
45-
copy_X : bool, optional
45+
copy_X : bool, default=True
4646
Whether the design matrix X must be copied by the algorithm. A false
4747
value is only helpful if X is already Fortran-ordered, otherwise a
4848
copy is made anyway.
4949
50-
return_path : bool, optional. Default: False
50+
return_path : bool, default=False
5151
Whether to return every value of the nonzero coefficients along the
5252
forward path. Useful for cross-validation.
5353
5454
Returns
5555
-------
56-
gamma : array, shape (n_nonzero_coefs,)
57-
Non-zero elements of the solution
56+
gamma : ndarray of shape (n_nonzero_coefs,)
57+
Non-zero elements of the solution.
5858
59-
idx : array, shape (n_nonzero_coefs,)
59+
idx : ndarray of shape (n_nonzero_coefs,)
6060
Indices of the positions of the elements in gamma within the solution
61-
vector
61+
vector.
6262
63-
coef : array, shape (n_features, n_nonzero_coefs)
63+
coef : ndarray of shape (n_features, n_nonzero_coefs)
6464
The first k values of column k correspond to the coefficient value
6565
for the active features at that step. The lower left triangle contains
6666
garbage. Only returned if ``return_path=True``.
@@ -145,44 +145,44 @@ def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None,
145145
146146
Parameters
147147
----------
148-
Gram : array, shape (n_features, n_features)
149-
Gram matrix of the input data matrix
148+
Gram : ndarray of shape (n_features, n_features)
149+
Gram matrix of the input data matrix.
150150
151-
Xy : array, shape (n_features,)
152-
Input targets
151+
Xy : ndarray of shape (n_features,)
152+
Input targets.
153153
154154
n_nonzero_coefs : int
155-
Targeted number of non-zero elements
155+
Targeted number of non-zero elements.
156156
157-
tol_0 : float
157+
tol_0 : float, default=None
158158
Squared norm of y, required if tol is not None.
159159
160-
tol : float
160+
tol : float, default=None
161161
Targeted squared error, if not None overrides n_nonzero_coefs.
162162
163-
copy_Gram : bool, optional
163+
copy_Gram : bool, default=True
164164
Whether the gram matrix must be copied by the algorithm. A false
165165
value is only helpful if it is already Fortran-ordered, otherwise a
166166
copy is made anyway.
167167
168-
copy_Xy : bool, optional
168+
copy_Xy : bool, default=True
169169
Whether the covariance vector Xy must be copied by the algorithm.
170170
If False, it may be overwritten.
171171
172-
return_path : bool, optional. Default: False
172+
return_path : bool, default=False
173173
Whether to return every value of the nonzero coefficients along the
174174
forward path. Useful for cross-validation.
175175
176176
Returns
177177
-------
178-
gamma : array, shape (n_nonzero_coefs,)
179-
Non-zero elements of the solution
178+
gamma : ndarray of shape (n_nonzero_coefs,)
179+
Non-zero elements of the solution.
180180
181-
idx : array, shape (n_nonzero_coefs,)
181+
idx : ndarray of shape (n_nonzero_coefs,)
182182
Indices of the positions of the elements in gamma within the solution
183-
vector
183+
vector.
184184
185-
coefs : array, shape (n_features, n_nonzero_coefs)
185+
coefs : ndarray of shape (n_features, n_nonzero_coefs)
186186
The first k values of column k correspond to the coefficient value
187187
for the active features at that step. The lower left triangle contains
188188
garbage. Only returned if ``return_path=True``.
@@ -267,7 +267,7 @@ def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None,
267267
def orthogonal_mp(X, y, *, n_nonzero_coefs=None, tol=None, precompute=False,
268268
copy_X=True, return_path=False,
269269
return_n_iter=False):
270-
r"""Orthogonal Matching Pursuit (OMP)
270+
r"""Orthogonal Matching Pursuit (OMP).
271271
272272
Solves n_targets Orthogonal Matching Pursuit problems.
273273
An instance of the problem has the form:
@@ -283,11 +283,11 @@ def orthogonal_mp(X, y, *, n_nonzero_coefs=None, tol=None, precompute=False,
283283
284284
Parameters
285285
----------
286-
X : array, shape (n_samples, n_features)
286+
X : ndarray of shape (n_samples, n_features)
287287
Input data. Columns are assumed to have unit norm.
288288
289-
y : array, shape (n_samples,) or (n_samples, n_targets)
290-
Input targets
289+
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
290+
Input targets.
291291
292292
n_nonzero_coefs : int, default=None
293293
Desired number of non-zero entries in the solution. If None (by
@@ -296,7 +296,7 @@ def orthogonal_mp(X, y, *, n_nonzero_coefs=None, tol=None, precompute=False,
296296
tol : float, default=None
297297
Maximum norm of the residual. If not None, overrides n_nonzero_coefs.
298298
299-
precompute : {True, False, 'auto'}, default=False
299+
precompute : 'auto' or bool, default=False
300300
Whether to perform precomputations. Improves performance when n_targets
301301
or n_samples is very large.
302302
@@ -314,7 +314,7 @@ def orthogonal_mp(X, y, *, n_nonzero_coefs=None, tol=None, precompute=False,
314314
315315
Returns
316316
-------
317-
coef : array, shape (n_features,) or (n_features, n_targets)
317+
coef : ndarray of shape (n_features,) or (n_features, n_targets)
318318
Coefficients of the OMP solution. If `return_path=True`, this contains
319319
the whole coefficient path. In this case its shape is
320320
(n_features, n_features) or (n_features, n_targets, n_features) and
@@ -412,7 +412,7 @@ def orthogonal_mp_gram(Gram, Xy, *, n_nonzero_coefs=None, tol=None,
412412
norms_squared=None, copy_Gram=True,
413413
copy_Xy=True, return_path=False,
414414
return_n_iter=False):
415-
"""Gram Orthogonal Matching Pursuit (OMP)
415+
"""Gram Orthogonal Matching Pursuit (OMP).
416416
417417
Solves n_targets Orthogonal Matching Pursuit problems using only
418418
the Gram matrix X.T * X and the product X.T * y.
@@ -421,11 +421,11 @@ def orthogonal_mp_gram(Gram, Xy, *, n_nonzero_coefs=None, tol=None,
421421
422422
Parameters
423423
----------
424-
Gram : array, shape (n_features, n_features)
425-
Gram matrix of the input data: X.T * X
424+
Gram : ndarray of shape (n_features, n_features)
425+
Gram matrix of the input data: X.T * X.
426426
427-
Xy : array, shape (n_features,) or (n_features, n_targets)
428-
Input targets multiplied by X: X.T * y
427+
Xy : ndarray of shape (n_features,) or (n_features, n_targets)
428+
Input targets multiplied by X: X.T * y.
429429
430430
n_nonzero_coefs : int, default=None
431431
Desired number of non-zero entries in the solution. If None (by
@@ -434,7 +434,7 @@ def orthogonal_mp_gram(Gram, Xy, *, n_nonzero_coefs=None, tol=None,
434434
tol : float, default=None
435435
Maximum norm of the residual. If not None, overrides n_nonzero_coefs.
436436
437-
norms_squared : array-like, shape (n_targets,), default=None
437+
norms_squared : array-like of shape (n_targets,), default=None
438438
Squared L2 norms of the lines of y. Required if tol is not None.
439439
440440
copy_Gram : bool, default=True
@@ -455,7 +455,7 @@ def orthogonal_mp_gram(Gram, Xy, *, n_nonzero_coefs=None, tol=None,
455455
456456
Returns
457457
-------
458-
coef : array, shape (n_features,) or (n_features, n_targets)
458+
coef : ndarray of shape (n_features,) or (n_features, n_targets)
459459
Coefficients of the OMP solution. If `return_path=True`, this contains
460460
the whole coefficient path. In this case its shape is
461461
(n_features, n_features) or (n_features, n_targets, n_features) and
@@ -544,7 +544,7 @@ def orthogonal_mp_gram(Gram, Xy, *, n_nonzero_coefs=None, tol=None,
544544

545545

546546
class OrthogonalMatchingPursuit(MultiOutputMixin, RegressorMixin, LinearModel):
547-
"""Orthogonal Matching Pursuit model (OMP)
547+
"""Orthogonal Matching Pursuit model (OMP).
548548
549549
Read more in the :ref:`User Guide <omp>`.
550550
@@ -557,32 +557,32 @@ class OrthogonalMatchingPursuit(MultiOutputMixin, RegressorMixin, LinearModel):
557557
tol : float, default=None
558558
Maximum norm of the residual. If not None, overrides n_nonzero_coefs.
559559
560-
fit_intercept : boolean, default=True
560+
fit_intercept : bool, default=True
561561
whether to calculate the intercept for this model. If set
562562
to false, no intercept will be used in calculations
563563
(i.e. data is expected to be centered).
564564
565-
normalize : boolean, default=True
565+
normalize : bool, default=True
566566
This parameter is ignored when ``fit_intercept`` is set to False.
567567
If True, the regressors X will be normalized before regression by
568568
subtracting the mean and dividing by the l2-norm.
569569
If you wish to standardize, please use
570570
:class:`~sklearn.preprocessing.StandardScaler` before calling ``fit``
571571
on an estimator with ``normalize=False``.
572572
573-
precompute : {True, False, 'auto'}, default='auto'
573+
precompute : 'auto' or bool, default='auto'
574574
Whether to use a precomputed Gram and Xy matrix to speed up
575575
calculations. Improves performance when :term:`n_targets` or
576576
:term:`n_samples` is very large. Note that if you already have such
577577
matrices, you can pass them directly to the fit method.
578578
579579
Attributes
580580
----------
581-
coef_ : array, shape (n_features,) or (n_targets, n_features)
582-
parameter vector (w in the formula)
581+
coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
582+
Parameter vector (w in the formula).
583583
584-
intercept_ : float or array, shape (n_targets,)
585-
independent term in decision function.
584+
intercept_ : float or ndarray of shape (n_targets,)
585+
Independent term in decision function.
586586
587587
n_iter_ : int or array-like
588588
Number of active features across every target.
@@ -634,10 +634,10 @@ def fit(self, X, y):
634634
635635
Parameters
636636
----------
637-
X : array-like, shape (n_samples, n_features)
637+
X : array-like of shape (n_samples, n_features)
638638
Training data.
639639
640-
y : array-like, shape (n_samples,) or (n_samples, n_targets)
640+
y : array-like of shape (n_samples,) or (n_samples, n_targets)
641641
Target values. Will be cast to X's dtype if necessary
642642
643643
@@ -683,47 +683,47 @@ def fit(self, X, y):
683683

684684
def _omp_path_residues(X_train, y_train, X_test, y_test, copy=True,
685685
fit_intercept=True, normalize=True, max_iter=100):
686-
"""Compute the residues on left-out data for a full LARS path
686+
"""Compute the residues on left-out data for a full LARS path.
687687
688688
Parameters
689689
----------
690-
X_train : array, shape (n_samples, n_features)
691-
The data to fit the LARS on
690+
X_train : ndarray of shape (n_samples, n_features)
691+
The data to fit the LARS on.
692692
693-
y_train : array, shape (n_samples)
694-
The target variable to fit LARS on
693+
y_train : ndarray of shape (n_samples)
694+
The target variable to fit LARS on.
695695
696-
X_test : array, shape (n_samples, n_features)
697-
The data to compute the residues on
696+
X_test : ndarray of shape (n_samples, n_features)
697+
The data to compute the residues on.
698698
699-
y_test : array, shape (n_samples)
700-
The target variable to compute the residues on
699+
y_test : ndarray of shape (n_samples)
700+
The target variable to compute the residues on.
701701
702-
copy : boolean, optional
702+
copy : bool, default=True
703703
Whether X_train, X_test, y_train and y_test should be copied. If
704704
False, they may be overwritten.
705705
706-
fit_intercept : boolean
707-
whether to calculate the intercept for this model. If set
706+
fit_intercept : bool, default=True
707+
Whether to calculate the intercept for this model. If set
708708
to false, no intercept will be used in calculations
709709
(i.e. data is expected to be centered).
710710
711-
normalize : boolean, optional, default True
711+
normalize : bool, default=True
712712
This parameter is ignored when ``fit_intercept`` is set to False.
713713
If True, the regressors X will be normalized before regression by
714714
subtracting the mean and dividing by the l2-norm.
715715
If you wish to standardize, please use
716716
:class:`~sklearn.preprocessing.StandardScaler` before calling ``fit``
717717
on an estimator with ``normalize=False``.
718718
719-
max_iter : integer, optional
719+
max_iter : int, default=100
720720
Maximum numbers of iterations to perform, therefore maximum features
721721
to include. 100 by default.
722722
723723
Returns
724724
-------
725-
residues : array, shape (n_samples, max_features)
726-
Residues of the prediction on the test data
725+
residues : ndarray of shape (n_samples, max_features)
726+
Residues of the prediction on the test data.
727727
"""
728728

729729
if copy:
@@ -767,29 +767,29 @@ class OrthogonalMatchingPursuitCV(RegressorMixin, LinearModel):
767767
768768
Parameters
769769
----------
770-
copy : bool, optional
770+
copy : bool, default=True
771771
Whether the design matrix X must be copied by the algorithm. A false
772772
value is only helpful if X is already Fortran-ordered, otherwise a
773773
copy is made anyway.
774774
775-
fit_intercept : boolean, optional
775+
fit_intercept : bool, default=True
776776
whether to calculate the intercept for this model. If set
777777
to false, no intercept will be used in calculations
778778
(i.e. data is expected to be centered).
779779
780-
normalize : boolean, optional, default True
780+
normalize : bool, default=True
781781
This parameter is ignored when ``fit_intercept`` is set to False.
782782
If True, the regressors X will be normalized before regression by
783783
subtracting the mean and dividing by the l2-norm.
784784
If you wish to standardize, please use
785785
:class:`~sklearn.preprocessing.StandardScaler` before calling ``fit``
786786
on an estimator with ``normalize=False``.
787787
788-
max_iter : integer, optional
788+
max_iter : int, default=None
789789
Maximum numbers of iterations to perform, therefore maximum features
790790
to include. 10% of ``n_features`` but at least 5 if available.
791791
792-
cv : int, cross-validation generator or an iterable, optional
792+
cv : int, cross-validation generator or iterable, default=None
793793
Determines the cross-validation splitting strategy.
794794
Possible inputs for cv are:
795795
@@ -806,21 +806,21 @@ class OrthogonalMatchingPursuitCV(RegressorMixin, LinearModel):
806806
.. versionchanged:: 0.22
807807
``cv`` default value if None changed from 3-fold to 5-fold.
808808
809-
n_jobs : int or None, optional (default=None)
809+
n_jobs : int, default=None
810810
Number of CPUs to use during the cross validation.
811811
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
812812
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
813813
for more details.
814814
815-
verbose : boolean or integer, optional
816-
Sets the verbosity amount
815+
verbose : bool or int, default=False
816+
Sets the verbosity amount.
817817
818818
Attributes
819819
----------
820-
intercept_ : float or array, shape (n_targets,)
820+
intercept_ : float or ndarray of shape (n_targets,)
821821
Independent term in decision function.
822822
823-
coef_ : array, shape (n_features,) or (n_targets, n_features)
823+
coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
824824
Parameter vector (w in the problem formulation).
825825
826826
n_nonzero_coefs_ : int
@@ -874,11 +874,11 @@ def fit(self, X, y):
874874
875875
Parameters
876876
----------
877-
X : array-like, shape [n_samples, n_features]
877+
X : array-like of shape (n_samples, n_features)
878878
Training data.
879879
880-
y : array-like, shape [n_samples]
881-
Target values. Will be cast to X's dtype if necessary
880+
y : array-like of shape (n_samples,)
881+
Target values. Will be cast to X's dtype if necessary.
882882
883883
Returns
884884
-------

0 commit comments

Comments
 (0)