Skip to content

Commit 2e74405

Browse files
committed
Created using Colaboratory
1 parent 10dcb3d commit 2e74405

File tree

1 file changed

+134
-129
lines changed

1 file changed

+134
-129
lines changed

notebooks/Index.ipynb

Lines changed: 134 additions & 129 deletions
Original file line numberDiff line numberDiff line change
@@ -1,131 +1,136 @@
11
{
2-
"cells": [
3-
{
4-
"cell_type": "markdown",
5-
"metadata": {},
6-
"source": [
7-
"# Python Data Science Handbook"
8-
]
2+
"nbformat": 4,
3+
"nbformat_minor": 0,
4+
"metadata": {
5+
"colab": {
6+
"name": "Index.ipynb",
7+
"version": "0.3.2",
8+
"provenance": []
9+
},
10+
"kernelspec": {
11+
"display_name": "Python 3",
12+
"language": "python",
13+
"name": "python3"
14+
}
915
},
10-
{
11-
"cell_type": "markdown",
12-
"metadata": {},
13-
"source": [
14-
"*Jake VanderPlas*\n",
15-
"\n",
16-
"![Book Cover](figures/PDSH-cover.png)"
17-
]
18-
},
19-
{
20-
"cell_type": "markdown",
21-
"metadata": {},
22-
"source": [
23-
"This is the Jupyter notebook version of the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).*\n",
24-
"The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!"
25-
]
26-
},
27-
{
28-
"cell_type": "markdown",
29-
"metadata": {},
30-
"source": [
31-
"## Table of Contents\n",
32-
"\n",
33-
"### [Preface](00.00-Preface.ipynb)\n",
34-
"\n",
35-
"### [1. IPython: Beyond Normal Python](01.00-IPython-Beyond-Normal-Python.ipynb)\n",
36-
"- [Help and Documentation in IPython](01.01-Help-And-Documentation.ipynb)\n",
37-
"- [Keyboard Shortcuts in the IPython Shell](01.02-Shell-Keyboard-Shortcuts.ipynb)\n",
38-
"- [IPython Magic Commands](01.03-Magic-Commands.ipynb)\n",
39-
"- [Input and Output History](01.04-Input-Output-History.ipynb)\n",
40-
"- [IPython and Shell Commands](01.05-IPython-And-Shell-Commands.ipynb)\n",
41-
"- [Errors and Debugging](01.06-Errors-and-Debugging.ipynb)\n",
42-
"- [Profiling and Timing Code](01.07-Timing-and-Profiling.ipynb)\n",
43-
"- [More IPython Resources](01.08-More-IPython-Resources.ipynb)\n",
44-
"\n",
45-
"### [2. Introduction to NumPy](02.00-Introduction-to-NumPy.ipynb)\n",
46-
"- [Understanding Data Types in Python](02.01-Understanding-Data-Types.ipynb)\n",
47-
"- [The Basics of NumPy Arrays](02.02-The-Basics-Of-NumPy-Arrays.ipynb)\n",
48-
"- [Computation on NumPy Arrays: Universal Functions](02.03-Computation-on-arrays-ufuncs.ipynb)\n",
49-
"- [Aggregations: Min, Max, and Everything In Between](02.04-Computation-on-arrays-aggregates.ipynb)\n",
50-
"- [Computation on Arrays: Broadcasting](02.05-Computation-on-arrays-broadcasting.ipynb)\n",
51-
"- [Comparisons, Masks, and Boolean Logic](02.06-Boolean-Arrays-and-Masks.ipynb)\n",
52-
"- [Fancy Indexing](02.07-Fancy-Indexing.ipynb)\n",
53-
"- [Sorting Arrays](02.08-Sorting.ipynb)\n",
54-
"- [Structured Data: NumPy's Structured Arrays](02.09-Structured-Data-NumPy.ipynb)\n",
55-
"\n",
56-
"### [3. Data Manipulation with Pandas](03.00-Introduction-to-Pandas.ipynb)\n",
57-
"- [Introducing Pandas Objects](03.01-Introducing-Pandas-Objects.ipynb)\n",
58-
"- [Data Indexing and Selection](03.02-Data-Indexing-and-Selection.ipynb)\n",
59-
"- [Operating on Data in Pandas](03.03-Operations-in-Pandas.ipynb)\n",
60-
"- [Handling Missing Data](03.04-Missing-Values.ipynb)\n",
61-
"- [Hierarchical Indexing](03.05-Hierarchical-Indexing.ipynb)\n",
62-
"- [Combining Datasets: Concat and Append](03.06-Concat-And-Append.ipynb)\n",
63-
"- [Combining Datasets: Merge and Join](03.07-Merge-and-Join.ipynb)\n",
64-
"- [Aggregation and Grouping](03.08-Aggregation-and-Grouping.ipynb)\n",
65-
"- [Pivot Tables](03.09-Pivot-Tables.ipynb)\n",
66-
"- [Vectorized String Operations](03.10-Working-With-Strings.ipynb)\n",
67-
"- [Working with Time Series](03.11-Working-with-Time-Series.ipynb)\n",
68-
"- [High-Performance Pandas: eval() and query()](03.12-Performance-Eval-and-Query.ipynb)\n",
69-
"- [Further Resources](03.13-Further-Resources.ipynb)\n",
70-
"\n",
71-
"### [4. Visualization with Matplotlib](04.00-Introduction-To-Matplotlib.ipynb)\n",
72-
"- [Simple Line Plots](04.01-Simple-Line-Plots.ipynb)\n",
73-
"- [Simple Scatter Plots](04.02-Simple-Scatter-Plots.ipynb)\n",
74-
"- [Visualizing Errors](04.03-Errorbars.ipynb)\n",
75-
"- [Density and Contour Plots](04.04-Density-and-Contour-Plots.ipynb)\n",
76-
"- [Histograms, Binnings, and Density](04.05-Histograms-and-Binnings.ipynb)\n",
77-
"- [Customizing Plot Legends](04.06-Customizing-Legends.ipynb)\n",
78-
"- [Customizing Colorbars](04.07-Customizing-Colorbars.ipynb)\n",
79-
"- [Multiple Subplots](04.08-Multiple-Subplots.ipynb)\n",
80-
"- [Text and Annotation](04.09-Text-and-Annotation.ipynb)\n",
81-
"- [Customizing Ticks](04.10-Customizing-Ticks.ipynb)\n",
82-
"- [Customizing Matplotlib: Configurations and Stylesheets](04.11-Settings-and-Stylesheets.ipynb)\n",
83-
"- [Three-Dimensional Plotting in Matplotlib](04.12-Three-Dimensional-Plotting.ipynb)\n",
84-
"- [Geographic Data with Basemap](04.13-Geographic-Data-With-Basemap.ipynb)\n",
85-
"- [Visualization with Seaborn](04.14-Visualization-With-Seaborn.ipynb)\n",
86-
"- [Further Resources](04.15-Further-Resources.ipynb)\n",
87-
"\n",
88-
"### [5. Machine Learning](05.00-Machine-Learning.ipynb)\n",
89-
"- [What Is Machine Learning?](05.01-What-Is-Machine-Learning.ipynb)\n",
90-
"- [Introducing Scikit-Learn](05.02-Introducing-Scikit-Learn.ipynb)\n",
91-
"- [Hyperparameters and Model Validation](05.03-Hyperparameters-and-Model-Validation.ipynb)\n",
92-
"- [Feature Engineering](05.04-Feature-Engineering.ipynb)\n",
93-
"- [In Depth: Naive Bayes Classification](05.05-Naive-Bayes.ipynb)\n",
94-
"- [In Depth: Linear Regression](05.06-Linear-Regression.ipynb)\n",
95-
"- [In-Depth: Support Vector Machines](05.07-Support-Vector-Machines.ipynb)\n",
96-
"- [In-Depth: Decision Trees and Random Forests](05.08-Random-Forests.ipynb)\n",
97-
"- [In Depth: Principal Component Analysis](05.09-Principal-Component-Analysis.ipynb)\n",
98-
"- [In-Depth: Manifold Learning](05.10-Manifold-Learning.ipynb)\n",
99-
"- [In Depth: k-Means Clustering](05.11-K-Means.ipynb)\n",
100-
"- [In Depth: Gaussian Mixture Models](05.12-Gaussian-Mixtures.ipynb)\n",
101-
"- [In-Depth: Kernel Density Estimation](05.13-Kernel-Density-Estimation.ipynb)\n",
102-
"- [Application: A Face Detection Pipeline](05.14-Image-Features.ipynb)\n",
103-
"- [Further Machine Learning Resources](05.15-Learning-More.ipynb)\n",
104-
"\n",
105-
"### [Appendix: Figure Code](06.00-Figure-Code.ipynb)"
106-
]
107-
}
108-
],
109-
"metadata": {
110-
"anaconda-cloud": {},
111-
"kernelspec": {
112-
"display_name": "Python 3",
113-
"language": "python",
114-
"name": "python3"
115-
},
116-
"language_info": {
117-
"codemirror_mode": {
118-
"name": "ipython",
119-
"version": 3
120-
},
121-
"file_extension": ".py",
122-
"mimetype": "text/x-python",
123-
"name": "python",
124-
"nbconvert_exporter": "python",
125-
"pygments_lexer": "ipython3",
126-
"version": "3.5.1"
127-
}
128-
},
129-
"nbformat": 4,
130-
"nbformat_minor": 0
131-
}
16+
"cells": [
17+
{
18+
"metadata": {
19+
"id": "QK-aoB6FuD8y",
20+
"colab_type": "text"
21+
},
22+
"cell_type": "markdown",
23+
"source": [
24+
"# Python Data Science Handbook\n",
25+
"-- John Duprey's copy"
26+
]
27+
},
28+
{
29+
"metadata": {
30+
"id": "5XaMdHenuD8z",
31+
"colab_type": "text"
32+
},
33+
"cell_type": "markdown",
34+
"source": [
35+
"*Jake VanderPlas*\n",
36+
"\n",
37+
"![Book Cover](https://github.com/jduprey/PythonDataScienceHandbook/blob/master/notebooks/figures/PDSH-cover.png?raw=1)"
38+
]
39+
},
40+
{
41+
"metadata": {
42+
"id": "ObhX6P2vuD80",
43+
"colab_type": "text"
44+
},
45+
"cell_type": "markdown",
46+
"source": [
47+
"This is the Jupyter notebook version of the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).*\n",
48+
"The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!"
49+
]
50+
},
51+
{
52+
"metadata": {
53+
"id": "hugjt7xiuD81",
54+
"colab_type": "text"
55+
},
56+
"cell_type": "markdown",
57+
"source": [
58+
"## Table of Contents\n",
59+
"\n",
60+
"### [Preface](00.00-Preface.ipynb)\n",
61+
"\n",
62+
"### [1. IPython: Beyond Normal Python](01.00-IPython-Beyond-Normal-Python.ipynb)\n",
63+
"- [Help and Documentation in IPython](01.01-Help-And-Documentation.ipynb)\n",
64+
"- [Keyboard Shortcuts in the IPython Shell](01.02-Shell-Keyboard-Shortcuts.ipynb)\n",
65+
"- [IPython Magic Commands](01.03-Magic-Commands.ipynb)\n",
66+
"- [Input and Output History](01.04-Input-Output-History.ipynb)\n",
67+
"- [IPython and Shell Commands](01.05-IPython-And-Shell-Commands.ipynb)\n",
68+
"- [Errors and Debugging](01.06-Errors-and-Debugging.ipynb)\n",
69+
"- [Profiling and Timing Code](01.07-Timing-and-Profiling.ipynb)\n",
70+
"- [More IPython Resources](01.08-More-IPython-Resources.ipynb)\n",
71+
"\n",
72+
"### [2. Introduction to NumPy](02.00-Introduction-to-NumPy.ipynb)\n",
73+
"- [Understanding Data Types in Python](02.01-Understanding-Data-Types.ipynb)\n",
74+
"- [The Basics of NumPy Arrays](02.02-The-Basics-Of-NumPy-Arrays.ipynb)\n",
75+
"- [Computation on NumPy Arrays: Universal Functions](02.03-Computation-on-arrays-ufuncs.ipynb)\n",
76+
"- [Aggregations: Min, Max, and Everything In Between](02.04-Computation-on-arrays-aggregates.ipynb)\n",
77+
"- [Computation on Arrays: Broadcasting](02.05-Computation-on-arrays-broadcasting.ipynb)\n",
78+
"- [Comparisons, Masks, and Boolean Logic](02.06-Boolean-Arrays-and-Masks.ipynb)\n",
79+
"- [Fancy Indexing](02.07-Fancy-Indexing.ipynb)\n",
80+
"- [Sorting Arrays](02.08-Sorting.ipynb)\n",
81+
"- [Structured Data: NumPy's Structured Arrays](02.09-Structured-Data-NumPy.ipynb)\n",
82+
"\n",
83+
"### [3. Data Manipulation with Pandas](03.00-Introduction-to-Pandas.ipynb)\n",
84+
"- [Introducing Pandas Objects](03.01-Introducing-Pandas-Objects.ipynb)\n",
85+
"- [Data Indexing and Selection](03.02-Data-Indexing-and-Selection.ipynb)\n",
86+
"- [Operating on Data in Pandas](03.03-Operations-in-Pandas.ipynb)\n",
87+
"- [Handling Missing Data](03.04-Missing-Values.ipynb)\n",
88+
"- [Hierarchical Indexing](03.05-Hierarchical-Indexing.ipynb)\n",
89+
"- [Combining Datasets: Concat and Append](03.06-Concat-And-Append.ipynb)\n",
90+
"- [Combining Datasets: Merge and Join](03.07-Merge-and-Join.ipynb)\n",
91+
"- [Aggregation and Grouping](03.08-Aggregation-and-Grouping.ipynb)\n",
92+
"- [Pivot Tables](03.09-Pivot-Tables.ipynb)\n",
93+
"- [Vectorized String Operations](03.10-Working-With-Strings.ipynb)\n",
94+
"- [Working with Time Series](03.11-Working-with-Time-Series.ipynb)\n",
95+
"- [High-Performance Pandas: eval() and query()](03.12-Performance-Eval-and-Query.ipynb)\n",
96+
"- [Further Resources](03.13-Further-Resources.ipynb)\n",
97+
"\n",
98+
"### [4. Visualization with Matplotlib](04.00-Introduction-To-Matplotlib.ipynb)\n",
99+
"- [Simple Line Plots](04.01-Simple-Line-Plots.ipynb)\n",
100+
"- [Simple Scatter Plots](04.02-Simple-Scatter-Plots.ipynb)\n",
101+
"- [Visualizing Errors](04.03-Errorbars.ipynb)\n",
102+
"- [Density and Contour Plots](04.04-Density-and-Contour-Plots.ipynb)\n",
103+
"- [Histograms, Binnings, and Density](04.05-Histograms-and-Binnings.ipynb)\n",
104+
"- [Customizing Plot Legends](04.06-Customizing-Legends.ipynb)\n",
105+
"- [Customizing Colorbars](04.07-Customizing-Colorbars.ipynb)\n",
106+
"- [Multiple Subplots](04.08-Multiple-Subplots.ipynb)\n",
107+
"- [Text and Annotation](04.09-Text-and-Annotation.ipynb)\n",
108+
"- [Customizing Ticks](04.10-Customizing-Ticks.ipynb)\n",
109+
"- [Customizing Matplotlib: Configurations and Stylesheets](04.11-Settings-and-Stylesheets.ipynb)\n",
110+
"- [Three-Dimensional Plotting in Matplotlib](04.12-Three-Dimensional-Plotting.ipynb)\n",
111+
"- [Geographic Data with Basemap](04.13-Geographic-Data-With-Basemap.ipynb)\n",
112+
"- [Visualization with Seaborn](04.14-Visualization-With-Seaborn.ipynb)\n",
113+
"- [Further Resources](04.15-Further-Resources.ipynb)\n",
114+
"\n",
115+
"### [5. Machine Learning](05.00-Machine-Learning.ipynb)\n",
116+
"- [What Is Machine Learning?](05.01-What-Is-Machine-Learning.ipynb)\n",
117+
"- [Introducing Scikit-Learn](05.02-Introducing-Scikit-Learn.ipynb)\n",
118+
"- [Hyperparameters and Model Validation](05.03-Hyperparameters-and-Model-Validation.ipynb)\n",
119+
"- [Feature Engineering](05.04-Feature-Engineering.ipynb)\n",
120+
"- [In Depth: Naive Bayes Classification](05.05-Naive-Bayes.ipynb)\n",
121+
"- [In Depth: Linear Regression](05.06-Linear-Regression.ipynb)\n",
122+
"- [In-Depth: Support Vector Machines](05.07-Support-Vector-Machines.ipynb)\n",
123+
"- [In-Depth: Decision Trees and Random Forests](05.08-Random-Forests.ipynb)\n",
124+
"- [In Depth: Principal Component Analysis](05.09-Principal-Component-Analysis.ipynb)\n",
125+
"- [In-Depth: Manifold Learning](05.10-Manifold-Learning.ipynb)\n",
126+
"- [In Depth: k-Means Clustering](05.11-K-Means.ipynb)\n",
127+
"- [In Depth: Gaussian Mixture Models](05.12-Gaussian-Mixtures.ipynb)\n",
128+
"- [In-Depth: Kernel Density Estimation](05.13-Kernel-Density-Estimation.ipynb)\n",
129+
"- [Application: A Face Detection Pipeline](05.14-Image-Features.ipynb)\n",
130+
"- [Further Machine Learning Resources](05.15-Learning-More.ipynb)\n",
131+
"\n",
132+
"### [Appendix: Figure Code](06.00-Figure-Code.ipynb)"
133+
]
134+
}
135+
]
136+
}

0 commit comments

Comments
 (0)