1
1
{
2
- "cells" : [
3
- {
4
- "cell_type" : " markdown" ,
5
- "metadata" : {},
6
- "source" : [
7
- " # Python Data Science Handbook"
8
- ]
2
+ "nbformat" : 4 ,
3
+ "nbformat_minor" : 0 ,
4
+ "metadata" : {
5
+ "colab" : {
6
+ "name" : " Index.ipynb" ,
7
+ "version" : " 0.3.2" ,
8
+ "provenance" : []
9
+ },
10
+ "kernelspec" : {
11
+ "display_name" : " Python 3" ,
12
+ "language" : " python" ,
13
+ "name" : " python3"
14
+ }
9
15
},
10
- {
11
- "cell_type" : " markdown" ,
12
- "metadata" : {},
13
- "source" : [
14
- " *Jake VanderPlas*\n " ,
15
- " \n " ,
16
- " "
17
- ]
18
- },
19
- {
20
- "cell_type" : " markdown" ,
21
- "metadata" : {},
22
- "source" : [
23
- " This is the Jupyter notebook version of the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).*\n " ,
24
- " The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!"
25
- ]
26
- },
27
- {
28
- "cell_type" : " markdown" ,
29
- "metadata" : {},
30
- "source" : [
31
- " ## Table of Contents\n " ,
32
- " \n " ,
33
- " ### [Preface](00.00-Preface.ipynb)\n " ,
34
- " \n " ,
35
- " ### [1. IPython: Beyond Normal Python](01.00-IPython-Beyond-Normal-Python.ipynb)\n " ,
36
- " - [Help and Documentation in IPython](01.01-Help-And-Documentation.ipynb)\n " ,
37
- " - [Keyboard Shortcuts in the IPython Shell](01.02-Shell-Keyboard-Shortcuts.ipynb)\n " ,
38
- " - [IPython Magic Commands](01.03-Magic-Commands.ipynb)\n " ,
39
- " - [Input and Output History](01.04-Input-Output-History.ipynb)\n " ,
40
- " - [IPython and Shell Commands](01.05-IPython-And-Shell-Commands.ipynb)\n " ,
41
- " - [Errors and Debugging](01.06-Errors-and-Debugging.ipynb)\n " ,
42
- " - [Profiling and Timing Code](01.07-Timing-and-Profiling.ipynb)\n " ,
43
- " - [More IPython Resources](01.08-More-IPython-Resources.ipynb)\n " ,
44
- " \n " ,
45
- " ### [2. Introduction to NumPy](02.00-Introduction-to-NumPy.ipynb)\n " ,
46
- " - [Understanding Data Types in Python](02.01-Understanding-Data-Types.ipynb)\n " ,
47
- " - [The Basics of NumPy Arrays](02.02-The-Basics-Of-NumPy-Arrays.ipynb)\n " ,
48
- " - [Computation on NumPy Arrays: Universal Functions](02.03-Computation-on-arrays-ufuncs.ipynb)\n " ,
49
- " - [Aggregations: Min, Max, and Everything In Between](02.04-Computation-on-arrays-aggregates.ipynb)\n " ,
50
- " - [Computation on Arrays: Broadcasting](02.05-Computation-on-arrays-broadcasting.ipynb)\n " ,
51
- " - [Comparisons, Masks, and Boolean Logic](02.06-Boolean-Arrays-and-Masks.ipynb)\n " ,
52
- " - [Fancy Indexing](02.07-Fancy-Indexing.ipynb)\n " ,
53
- " - [Sorting Arrays](02.08-Sorting.ipynb)\n " ,
54
- " - [Structured Data: NumPy's Structured Arrays](02.09-Structured-Data-NumPy.ipynb)\n " ,
55
- " \n " ,
56
- " ### [3. Data Manipulation with Pandas](03.00-Introduction-to-Pandas.ipynb)\n " ,
57
- " - [Introducing Pandas Objects](03.01-Introducing-Pandas-Objects.ipynb)\n " ,
58
- " - [Data Indexing and Selection](03.02-Data-Indexing-and-Selection.ipynb)\n " ,
59
- " - [Operating on Data in Pandas](03.03-Operations-in-Pandas.ipynb)\n " ,
60
- " - [Handling Missing Data](03.04-Missing-Values.ipynb)\n " ,
61
- " - [Hierarchical Indexing](03.05-Hierarchical-Indexing.ipynb)\n " ,
62
- " - [Combining Datasets: Concat and Append](03.06-Concat-And-Append.ipynb)\n " ,
63
- " - [Combining Datasets: Merge and Join](03.07-Merge-and-Join.ipynb)\n " ,
64
- " - [Aggregation and Grouping](03.08-Aggregation-and-Grouping.ipynb)\n " ,
65
- " - [Pivot Tables](03.09-Pivot-Tables.ipynb)\n " ,
66
- " - [Vectorized String Operations](03.10-Working-With-Strings.ipynb)\n " ,
67
- " - [Working with Time Series](03.11-Working-with-Time-Series.ipynb)\n " ,
68
- " - [High-Performance Pandas: eval() and query()](03.12-Performance-Eval-and-Query.ipynb)\n " ,
69
- " - [Further Resources](03.13-Further-Resources.ipynb)\n " ,
70
- " \n " ,
71
- " ### [4. Visualization with Matplotlib](04.00-Introduction-To-Matplotlib.ipynb)\n " ,
72
- " - [Simple Line Plots](04.01-Simple-Line-Plots.ipynb)\n " ,
73
- " - [Simple Scatter Plots](04.02-Simple-Scatter-Plots.ipynb)\n " ,
74
- " - [Visualizing Errors](04.03-Errorbars.ipynb)\n " ,
75
- " - [Density and Contour Plots](04.04-Density-and-Contour-Plots.ipynb)\n " ,
76
- " - [Histograms, Binnings, and Density](04.05-Histograms-and-Binnings.ipynb)\n " ,
77
- " - [Customizing Plot Legends](04.06-Customizing-Legends.ipynb)\n " ,
78
- " - [Customizing Colorbars](04.07-Customizing-Colorbars.ipynb)\n " ,
79
- " - [Multiple Subplots](04.08-Multiple-Subplots.ipynb)\n " ,
80
- " - [Text and Annotation](04.09-Text-and-Annotation.ipynb)\n " ,
81
- " - [Customizing Ticks](04.10-Customizing-Ticks.ipynb)\n " ,
82
- " - [Customizing Matplotlib: Configurations and Stylesheets](04.11-Settings-and-Stylesheets.ipynb)\n " ,
83
- " - [Three-Dimensional Plotting in Matplotlib](04.12-Three-Dimensional-Plotting.ipynb)\n " ,
84
- " - [Geographic Data with Basemap](04.13-Geographic-Data-With-Basemap.ipynb)\n " ,
85
- " - [Visualization with Seaborn](04.14-Visualization-With-Seaborn.ipynb)\n " ,
86
- " - [Further Resources](04.15-Further-Resources.ipynb)\n " ,
87
- " \n " ,
88
- " ### [5. Machine Learning](05.00-Machine-Learning.ipynb)\n " ,
89
- " - [What Is Machine Learning?](05.01-What-Is-Machine-Learning.ipynb)\n " ,
90
- " - [Introducing Scikit-Learn](05.02-Introducing-Scikit-Learn.ipynb)\n " ,
91
- " - [Hyperparameters and Model Validation](05.03-Hyperparameters-and-Model-Validation.ipynb)\n " ,
92
- " - [Feature Engineering](05.04-Feature-Engineering.ipynb)\n " ,
93
- " - [In Depth: Naive Bayes Classification](05.05-Naive-Bayes.ipynb)\n " ,
94
- " - [In Depth: Linear Regression](05.06-Linear-Regression.ipynb)\n " ,
95
- " - [In-Depth: Support Vector Machines](05.07-Support-Vector-Machines.ipynb)\n " ,
96
- " - [In-Depth: Decision Trees and Random Forests](05.08-Random-Forests.ipynb)\n " ,
97
- " - [In Depth: Principal Component Analysis](05.09-Principal-Component-Analysis.ipynb)\n " ,
98
- " - [In-Depth: Manifold Learning](05.10-Manifold-Learning.ipynb)\n " ,
99
- " - [In Depth: k-Means Clustering](05.11-K-Means.ipynb)\n " ,
100
- " - [In Depth: Gaussian Mixture Models](05.12-Gaussian-Mixtures.ipynb)\n " ,
101
- " - [In-Depth: Kernel Density Estimation](05.13-Kernel-Density-Estimation.ipynb)\n " ,
102
- " - [Application: A Face Detection Pipeline](05.14-Image-Features.ipynb)\n " ,
103
- " - [Further Machine Learning Resources](05.15-Learning-More.ipynb)\n " ,
104
- " \n " ,
105
- " ### [Appendix: Figure Code](06.00-Figure-Code.ipynb)"
106
- ]
107
- }
108
- ],
109
- "metadata" : {
110
- "anaconda-cloud" : {},
111
- "kernelspec" : {
112
- "display_name" : " Python 3" ,
113
- "language" : " python" ,
114
- "name" : " python3"
115
- },
116
- "language_info" : {
117
- "codemirror_mode" : {
118
- "name" : " ipython" ,
119
- "version" : 3
120
- },
121
- "file_extension" : " .py" ,
122
- "mimetype" : " text/x-python" ,
123
- "name" : " python" ,
124
- "nbconvert_exporter" : " python" ,
125
- "pygments_lexer" : " ipython3" ,
126
- "version" : " 3.5.1"
127
- }
128
- },
129
- "nbformat" : 4 ,
130
- "nbformat_minor" : 0
131
- }
16
+ "cells" : [
17
+ {
18
+ "metadata" : {
19
+ "id" : " QK-aoB6FuD8y" ,
20
+ "colab_type" : " text"
21
+ },
22
+ "cell_type" : " markdown" ,
23
+ "source" : [
24
+ " # Python Data Science Handbook\n " ,
25
+ " -- John Duprey's copy"
26
+ ]
27
+ },
28
+ {
29
+ "metadata" : {
30
+ "id" : " 5XaMdHenuD8z" ,
31
+ "colab_type" : " text"
32
+ },
33
+ "cell_type" : " markdown" ,
34
+ "source" : [
35
+ " *Jake VanderPlas*\n " ,
36
+ " \n " ,
37
+ " "
38
+ ]
39
+ },
40
+ {
41
+ "metadata" : {
42
+ "id" : " ObhX6P2vuD80" ,
43
+ "colab_type" : " text"
44
+ },
45
+ "cell_type" : " markdown" ,
46
+ "source" : [
47
+ " This is the Jupyter notebook version of the [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) by Jake VanderPlas; the content is available [on GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).*\n " ,
48
+ " The text is released under the [CC-BY-NC-ND license](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), and code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work by [buying the book](http://shop.oreilly.com/product/0636920034919.do)!"
49
+ ]
50
+ },
51
+ {
52
+ "metadata" : {
53
+ "id" : " hugjt7xiuD81" ,
54
+ "colab_type" : " text"
55
+ },
56
+ "cell_type" : " markdown" ,
57
+ "source" : [
58
+ " ## Table of Contents\n " ,
59
+ " \n " ,
60
+ " ### [Preface](00.00-Preface.ipynb)\n " ,
61
+ " \n " ,
62
+ " ### [1. IPython: Beyond Normal Python](01.00-IPython-Beyond-Normal-Python.ipynb)\n " ,
63
+ " - [Help and Documentation in IPython](01.01-Help-And-Documentation.ipynb)\n " ,
64
+ " - [Keyboard Shortcuts in the IPython Shell](01.02-Shell-Keyboard-Shortcuts.ipynb)\n " ,
65
+ " - [IPython Magic Commands](01.03-Magic-Commands.ipynb)\n " ,
66
+ " - [Input and Output History](01.04-Input-Output-History.ipynb)\n " ,
67
+ " - [IPython and Shell Commands](01.05-IPython-And-Shell-Commands.ipynb)\n " ,
68
+ " - [Errors and Debugging](01.06-Errors-and-Debugging.ipynb)\n " ,
69
+ " - [Profiling and Timing Code](01.07-Timing-and-Profiling.ipynb)\n " ,
70
+ " - [More IPython Resources](01.08-More-IPython-Resources.ipynb)\n " ,
71
+ " \n " ,
72
+ " ### [2. Introduction to NumPy](02.00-Introduction-to-NumPy.ipynb)\n " ,
73
+ " - [Understanding Data Types in Python](02.01-Understanding-Data-Types.ipynb)\n " ,
74
+ " - [The Basics of NumPy Arrays](02.02-The-Basics-Of-NumPy-Arrays.ipynb)\n " ,
75
+ " - [Computation on NumPy Arrays: Universal Functions](02.03-Computation-on-arrays-ufuncs.ipynb)\n " ,
76
+ " - [Aggregations: Min, Max, and Everything In Between](02.04-Computation-on-arrays-aggregates.ipynb)\n " ,
77
+ " - [Computation on Arrays: Broadcasting](02.05-Computation-on-arrays-broadcasting.ipynb)\n " ,
78
+ " - [Comparisons, Masks, and Boolean Logic](02.06-Boolean-Arrays-and-Masks.ipynb)\n " ,
79
+ " - [Fancy Indexing](02.07-Fancy-Indexing.ipynb)\n " ,
80
+ " - [Sorting Arrays](02.08-Sorting.ipynb)\n " ,
81
+ " - [Structured Data: NumPy's Structured Arrays](02.09-Structured-Data-NumPy.ipynb)\n " ,
82
+ " \n " ,
83
+ " ### [3. Data Manipulation with Pandas](03.00-Introduction-to-Pandas.ipynb)\n " ,
84
+ " - [Introducing Pandas Objects](03.01-Introducing-Pandas-Objects.ipynb)\n " ,
85
+ " - [Data Indexing and Selection](03.02-Data-Indexing-and-Selection.ipynb)\n " ,
86
+ " - [Operating on Data in Pandas](03.03-Operations-in-Pandas.ipynb)\n " ,
87
+ " - [Handling Missing Data](03.04-Missing-Values.ipynb)\n " ,
88
+ " - [Hierarchical Indexing](03.05-Hierarchical-Indexing.ipynb)\n " ,
89
+ " - [Combining Datasets: Concat and Append](03.06-Concat-And-Append.ipynb)\n " ,
90
+ " - [Combining Datasets: Merge and Join](03.07-Merge-and-Join.ipynb)\n " ,
91
+ " - [Aggregation and Grouping](03.08-Aggregation-and-Grouping.ipynb)\n " ,
92
+ " - [Pivot Tables](03.09-Pivot-Tables.ipynb)\n " ,
93
+ " - [Vectorized String Operations](03.10-Working-With-Strings.ipynb)\n " ,
94
+ " - [Working with Time Series](03.11-Working-with-Time-Series.ipynb)\n " ,
95
+ " - [High-Performance Pandas: eval() and query()](03.12-Performance-Eval-and-Query.ipynb)\n " ,
96
+ " - [Further Resources](03.13-Further-Resources.ipynb)\n " ,
97
+ " \n " ,
98
+ " ### [4. Visualization with Matplotlib](04.00-Introduction-To-Matplotlib.ipynb)\n " ,
99
+ " - [Simple Line Plots](04.01-Simple-Line-Plots.ipynb)\n " ,
100
+ " - [Simple Scatter Plots](04.02-Simple-Scatter-Plots.ipynb)\n " ,
101
+ " - [Visualizing Errors](04.03-Errorbars.ipynb)\n " ,
102
+ " - [Density and Contour Plots](04.04-Density-and-Contour-Plots.ipynb)\n " ,
103
+ " - [Histograms, Binnings, and Density](04.05-Histograms-and-Binnings.ipynb)\n " ,
104
+ " - [Customizing Plot Legends](04.06-Customizing-Legends.ipynb)\n " ,
105
+ " - [Customizing Colorbars](04.07-Customizing-Colorbars.ipynb)\n " ,
106
+ " - [Multiple Subplots](04.08-Multiple-Subplots.ipynb)\n " ,
107
+ " - [Text and Annotation](04.09-Text-and-Annotation.ipynb)\n " ,
108
+ " - [Customizing Ticks](04.10-Customizing-Ticks.ipynb)\n " ,
109
+ " - [Customizing Matplotlib: Configurations and Stylesheets](04.11-Settings-and-Stylesheets.ipynb)\n " ,
110
+ " - [Three-Dimensional Plotting in Matplotlib](04.12-Three-Dimensional-Plotting.ipynb)\n " ,
111
+ " - [Geographic Data with Basemap](04.13-Geographic-Data-With-Basemap.ipynb)\n " ,
112
+ " - [Visualization with Seaborn](04.14-Visualization-With-Seaborn.ipynb)\n " ,
113
+ " - [Further Resources](04.15-Further-Resources.ipynb)\n " ,
114
+ " \n " ,
115
+ " ### [5. Machine Learning](05.00-Machine-Learning.ipynb)\n " ,
116
+ " - [What Is Machine Learning?](05.01-What-Is-Machine-Learning.ipynb)\n " ,
117
+ " - [Introducing Scikit-Learn](05.02-Introducing-Scikit-Learn.ipynb)\n " ,
118
+ " - [Hyperparameters and Model Validation](05.03-Hyperparameters-and-Model-Validation.ipynb)\n " ,
119
+ " - [Feature Engineering](05.04-Feature-Engineering.ipynb)\n " ,
120
+ " - [In Depth: Naive Bayes Classification](05.05-Naive-Bayes.ipynb)\n " ,
121
+ " - [In Depth: Linear Regression](05.06-Linear-Regression.ipynb)\n " ,
122
+ " - [In-Depth: Support Vector Machines](05.07-Support-Vector-Machines.ipynb)\n " ,
123
+ " - [In-Depth: Decision Trees and Random Forests](05.08-Random-Forests.ipynb)\n " ,
124
+ " - [In Depth: Principal Component Analysis](05.09-Principal-Component-Analysis.ipynb)\n " ,
125
+ " - [In-Depth: Manifold Learning](05.10-Manifold-Learning.ipynb)\n " ,
126
+ " - [In Depth: k-Means Clustering](05.11-K-Means.ipynb)\n " ,
127
+ " - [In Depth: Gaussian Mixture Models](05.12-Gaussian-Mixtures.ipynb)\n " ,
128
+ " - [In-Depth: Kernel Density Estimation](05.13-Kernel-Density-Estimation.ipynb)\n " ,
129
+ " - [Application: A Face Detection Pipeline](05.14-Image-Features.ipynb)\n " ,
130
+ " - [Further Machine Learning Resources](05.15-Learning-More.ipynb)\n " ,
131
+ " \n " ,
132
+ " ### [Appendix: Figure Code](06.00-Figure-Code.ipynb)"
133
+ ]
134
+ }
135
+ ]
136
+ }
0 commit comments