|
| 1 | +from pyspark.sql import SparkSession |
| 2 | + |
| 3 | +AGE_MIDPOINT = "age_midpoint" |
| 4 | +SALARY_MIDPOINT = "salary_midpoint" |
| 5 | +SALARY_MIDPOINT_BUCKET = "salary_midpoint_bucket" |
| 6 | + |
| 7 | +if __name__ == "__main__": |
| 8 | + |
| 9 | + session = SparkSession.builder.appName("StackOverFlowSurvey").master("local").getOrCreate() |
| 10 | + session.sparkContext.setLogLevel("ERROR") |
| 11 | + dataFrameReader = session.read |
| 12 | + |
| 13 | + responses = dataFrameReader \ |
| 14 | + .option("header", "true") \ |
| 15 | + .option("inferSchema", value = True) \ |
| 16 | + .csv("in/2016-stack-overflow-survey-responses.csv") |
| 17 | + |
| 18 | + print("=== Print out schema ===") |
| 19 | + responses.printSchema() |
| 20 | + |
| 21 | + responseWithSelectedColumns = responses.select("country", "occupation", AGE_MIDPOINT, SALARY_MIDPOINT) |
| 22 | + |
| 23 | + print("=== Print the selected columns of the table ===") |
| 24 | + responseWithSelectedColumns.show() |
| 25 | + |
| 26 | + print("=== Print records where the response is from Afghanistan ===") |
| 27 | + responseWithSelectedColumns.filter(responseWithSelectedColumns["country"] == "Afghanistan").show() |
| 28 | + |
| 29 | + print("=== Print the count of occupations ===") |
| 30 | + groupedDataset = responseWithSelectedColumns.groupBy("occupation") |
| 31 | + groupedDataset.count().show() |
| 32 | + |
| 33 | + print("=== Print records with average mid age less than 20 ===") |
| 34 | + responseWithSelectedColumns.filter(responseWithSelectedColumns[AGE_MIDPOINT] < 20).show() |
| 35 | + |
| 36 | + print("=== Print the result by salary middle point in descending order ===") |
| 37 | + responseWithSelectedColumns.orderBy(responseWithSelectedColumns[SALARY_MIDPOINT], ascending=False).show() |
| 38 | + |
| 39 | + print("=== Group by country and aggregate by average salary middle point ===") |
| 40 | + datasetGroupByCountry = responseWithSelectedColumns.groupBy("country") |
| 41 | + datasetGroupByCountry.avg(SALARY_MIDPOINT).show() |
| 42 | + |
| 43 | + responseWithSalaryBucket = responses.withColumn(SALARY_MIDPOINT_BUCKET, |
| 44 | + ((responses[SALARY_MIDPOINT]/20000).cast("integer")*20000)) |
| 45 | + |
| 46 | + print("=== With salary bucket column ===") |
| 47 | + responseWithSalaryBucket.select(SALARY_MIDPOINT, SALARY_MIDPOINT_BUCKET).show() |
| 48 | + |
| 49 | + print("=== Group by salary bucket ===") |
| 50 | + responseWithSalaryBucket.groupBy(SALARY_MIDPOINT_BUCKET).count().orderBy(SALARY_MIDPOINT_BUCKET).show() |
| 51 | + |
| 52 | + session.stop() |
0 commit comments