forked from Kyligence/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbroadcast.py
368 lines (302 loc) · 11.8 KB
/
broadcast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import gc
import os
import sys
from tempfile import NamedTemporaryFile
import threading
import pickle
from typing import (
overload,
Any,
Callable,
Dict,
Generic,
IO,
Iterator,
Optional,
Tuple,
TypeVar,
TYPE_CHECKING,
Union,
)
from typing.io import BinaryIO # type: ignore[import]
from pyspark.java_gateway import local_connect_and_auth
from pyspark.serializers import ChunkedStream, pickle_protocol
from pyspark.util import print_exec
if TYPE_CHECKING:
from pyspark import SparkContext
__all__ = ["Broadcast"]
T = TypeVar("T")
# Holds broadcasted data received from Java, keyed by its id.
_broadcastRegistry: Dict[int, "Broadcast[Any]"] = {}
def _from_id(bid: int) -> "Broadcast[Any]":
from pyspark.broadcast import _broadcastRegistry
if bid not in _broadcastRegistry:
raise RuntimeError("Broadcast variable '%s' not loaded!" % bid)
return _broadcastRegistry[bid]
class Broadcast(Generic[T]):
"""
A broadcast variable created with :meth:`SparkContext.broadcast`.
Access its value through :attr:`value`.
Examples
--------
>>> b = spark.sparkContext.broadcast([1, 2, 3, 4, 5])
>>> b.value
[1, 2, 3, 4, 5]
>>> spark.sparkContext.parallelize([0, 0]).flatMap(lambda x: b.value).collect()
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
>>> b.unpersist()
>>> large_broadcast = spark.sparkContext.broadcast(range(10000))
"""
@overload # On driver
def __init__(
self: "Broadcast[T]",
sc: "SparkContext",
value: T,
pickle_registry: "BroadcastPickleRegistry",
):
...
@overload # On worker without decryption server
def __init__(self: "Broadcast[Any]", *, path: str):
...
@overload # On worker with decryption server
def __init__(self: "Broadcast[Any]", *, sock_file: str):
...
def __init__(
self,
sc: Optional["SparkContext"] = None,
value: Optional[T] = None,
pickle_registry: Optional["BroadcastPickleRegistry"] = None,
path: Optional[str] = None,
sock_file: Optional[BinaryIO] = None,
):
"""
Should not be called directly by users -- use :meth:`SparkContext.broadcast`
instead.
"""
if sc is not None:
# we're on the driver. We want the pickled data to end up in a file (maybe encrypted)
f = NamedTemporaryFile(delete=False, dir=sc._temp_dir)
self._path = f.name
self._sc: Optional["SparkContext"] = sc
assert sc._jvm is not None
self._python_broadcast = sc._jvm.PythonRDD.setupBroadcast(self._path)
broadcast_out: Union[ChunkedStream, IO[bytes]]
if sc._encryption_enabled:
# with encryption, we ask the jvm to do the encryption for us, we send it data
# over a socket
port, auth_secret = self._python_broadcast.setupEncryptionServer()
(encryption_sock_file, _) = local_connect_and_auth(port, auth_secret)
broadcast_out = ChunkedStream(encryption_sock_file, 8192)
else:
# no encryption, we can just write pickled data directly to the file from python
broadcast_out = f
self.dump(value, broadcast_out) # type: ignore[arg-type]
if sc._encryption_enabled:
self._python_broadcast.waitTillDataReceived()
self._jbroadcast = sc._jsc.broadcast(self._python_broadcast)
self._pickle_registry = pickle_registry
else:
# we're on an executor
self._jbroadcast = None
self._sc = None
self._python_broadcast = None
if sock_file is not None:
# the jvm is doing decryption for us. Read the value
# immediately from the sock_file
self._value = self.load(sock_file)
else:
# the jvm just dumps the pickled data in path -- we'll unpickle lazily when
# the value is requested
assert path is not None
self._path = path
def dump(self, value: T, f: BinaryIO) -> None:
"""
Write a pickled representation of value to the open file or socket.
The protocol pickle is HIGHEST_PROTOCOL.
Parameters
----------
value : T
Value to write.
f : :class:`BinaryIO`
File or socket where the pickled value will be stored.
Examples
--------
>>> import os
>>> import tempfile
>>> b = spark.sparkContext.broadcast([1, 2, 3, 4, 5])
Write a pickled representation of `b` to the open temp file.
>>> with tempfile.TemporaryDirectory() as d:
... path = os.path.join(d, "test.txt")
... with open(path, "wb") as f:
... b.dump(b.value, f)
"""
try:
pickle.dump(value, f, pickle_protocol)
except pickle.PickleError:
raise
except Exception as e:
msg = "Could not serialize broadcast: %s: %s" % (e.__class__.__name__, str(e))
print_exec(sys.stderr)
raise pickle.PicklingError(msg)
f.close()
def load_from_path(self, path: str) -> T:
"""
Read the pickled representation of an object from the open file and
return the reconstituted object hierarchy specified therein.
Parameters
----------
path : str
File path where reads the pickled value.
Returns
-------
T
The object hierarchy specified therein reconstituted
from the pickled representation of an object.
Examples
--------
>>> import os
>>> import tempfile
>>> b = spark.sparkContext.broadcast([1, 2, 3, 4, 5])
>>> c = spark.sparkContext.broadcast(1)
Read the pickled representation of value from temp file.
>>> with tempfile.TemporaryDirectory() as d:
... path = os.path.join(d, "test.txt")
... with open(path, "wb") as f:
... b.dump(b.value, f)
... c.load_from_path(path)
[1, 2, 3, 4, 5]
"""
with open(path, "rb", 1 << 20) as f:
return self.load(f)
def load(self, file: BinaryIO) -> T:
"""
Read a pickled representation of value from the open file or socket.
Parameters
----------
file : :class:`BinaryIO`
File or socket where the pickled value will be read.
Returns
-------
T
The object hierarchy specified therein reconstituted
from the pickled representation of an object.
Examples
--------
>>> import os
>>> import tempfile
>>> b = spark.sparkContext.broadcast([1, 2, 3, 4, 5])
>>> c = spark.sparkContext.broadcast(1)
Read the pickled representation of value from the open temp file.
>>> with tempfile.TemporaryDirectory() as d:
... path = os.path.join(d, "test.txt")
... with open(path, "wb") as f:
... b.dump(b.value, f)
... with open(path, "rb") as f:
... c.load(f)
[1, 2, 3, 4, 5]
"""
gc.disable()
try:
return pickle.load(file)
finally:
gc.enable()
@property
def value(self) -> T:
"""Return the broadcasted value"""
if not hasattr(self, "_value") and self._path is not None:
# we only need to decrypt it here when encryption is enabled and
# if its on the driver, since executor decryption is handled already
if self._sc is not None and self._sc._encryption_enabled:
port, auth_secret = self._python_broadcast.setupDecryptionServer()
(decrypted_sock_file, _) = local_connect_and_auth(port, auth_secret)
self._python_broadcast.waitTillBroadcastDataSent()
return self.load(decrypted_sock_file)
else:
self._value = self.load_from_path(self._path)
return self._value
def unpersist(self, blocking: bool = False) -> None:
"""
Delete cached copies of this broadcast on the executors. If the
broadcast is used after this is called, it will need to be
re-sent to each executor.
Parameters
----------
blocking : bool, optional, default False
Whether to block until unpersisting has completed.
Examples
--------
>>> b = spark.sparkContext.broadcast([1, 2, 3, 4, 5])
Delete cached copies of this broadcast on the executors
>>> b.unpersist()
"""
if self._jbroadcast is None:
raise RuntimeError("Broadcast can only be unpersisted in driver")
self._jbroadcast.unpersist(blocking)
def destroy(self, blocking: bool = False) -> None:
"""
Destroy all data and metadata related to this broadcast variable.
Use this with caution; once a broadcast variable has been destroyed,
it cannot be used again.
.. versionchanged:: 3.0.0
Added optional argument `blocking` to specify whether to block until all
blocks are deleted.
Parameters
----------
blocking : bool, optional, default False
Whether to block until unpersisting has completed.
Examples
--------
>>> b = spark.sparkContext.broadcast([1, 2, 3, 4, 5])
Destroy all data and metadata related to this broadcast variable
>>> b.destroy()
"""
if self._jbroadcast is None:
raise RuntimeError("Broadcast can only be destroyed in driver")
self._jbroadcast.destroy(blocking)
os.unlink(self._path)
def __reduce__(self) -> Tuple[Callable[[int], "Broadcast[T]"], Tuple[int]]:
if self._jbroadcast is None:
raise RuntimeError("Broadcast can only be serialized in driver")
assert self._pickle_registry is not None
self._pickle_registry.add(self)
return _from_id, (self._jbroadcast.id(),)
class BroadcastPickleRegistry(threading.local):
"""Thread-local registry for broadcast variables that have been pickled"""
def __init__(self) -> None:
self.__dict__.setdefault("_registry", set())
def __iter__(self) -> Iterator[Broadcast[Any]]:
for bcast in self._registry:
yield bcast
def add(self, bcast: Broadcast[Any]) -> None:
self._registry.add(bcast)
def clear(self) -> None:
self._registry.clear()
def _test() -> None:
import doctest
from pyspark.sql import SparkSession
import pyspark.broadcast
globs = pyspark.broadcast.__dict__.copy()
spark = SparkSession.builder.master("local[4]").appName("broadcast tests").getOrCreate()
globs["spark"] = spark
(failure_count, test_count) = doctest.testmod(pyspark.broadcast, globs=globs)
spark.stop()
if failure_count:
sys.exit(-1)
if __name__ == "__main__":
_test()