forked from Kyligence/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
451 lines (380 loc) · 15.3 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from typing import Any, Dict, List, Optional, Tuple, Type, Union, cast, TYPE_CHECKING
from pyspark import keyword_only, since, SparkContext
from pyspark.ml.base import Estimator, Model, Transformer
from pyspark.ml.param import Param, Params
from pyspark.ml.util import (
MLReadable,
MLWritable,
JavaMLWriter,
JavaMLReader,
DefaultParamsReader,
DefaultParamsWriter,
MLWriter,
MLReader,
JavaMLReadable,
JavaMLWritable,
)
from pyspark.ml.wrapper import JavaParams
from pyspark.ml.common import inherit_doc
from pyspark.sql.dataframe import DataFrame
if TYPE_CHECKING:
from pyspark.ml._typing import ParamMap, PipelineStage
from py4j.java_gateway import JavaObject
@inherit_doc
class Pipeline(Estimator["PipelineModel"], MLReadable["Pipeline"], MLWritable):
"""
A simple pipeline, which acts as an estimator. A Pipeline consists
of a sequence of stages, each of which is either an
:py:class:`Estimator` or a :py:class:`Transformer`. When
:py:meth:`Pipeline.fit` is called, the stages are executed in
order. If a stage is an :py:class:`Estimator`, its
:py:meth:`Estimator.fit` method will be called on the input
dataset to fit a model. Then the model, which is a transformer,
will be used to transform the dataset as the input to the next
stage. If a stage is a :py:class:`Transformer`, its
:py:meth:`Transformer.transform` method will be called to produce
the dataset for the next stage. The fitted model from a
:py:class:`Pipeline` is a :py:class:`PipelineModel`, which
consists of fitted models and transformers, corresponding to the
pipeline stages. If stages is an empty list, the pipeline acts as an
identity transformer.
.. versionadded:: 1.3.0
"""
stages: Param[List["PipelineStage"]] = Param(
Params._dummy(), "stages", "a list of pipeline stages"
)
_input_kwargs: Dict[str, Any]
@keyword_only
def __init__(self, *, stages: Optional[List["PipelineStage"]] = None):
"""
__init__(self, \\*, stages=None)
"""
super(Pipeline, self).__init__()
kwargs = self._input_kwargs
self.setParams(**kwargs)
def setStages(self, value: List["PipelineStage"]) -> "Pipeline":
"""
Set pipeline stages.
.. versionadded:: 1.3.0
Parameters
----------
value : list
of :py:class:`pyspark.ml.Transformer`
or :py:class:`pyspark.ml.Estimator`
Returns
-------
:py:class:`Pipeline`
the pipeline instance
"""
return self._set(stages=value)
@since("1.3.0")
def getStages(self) -> List["PipelineStage"]:
"""
Get pipeline stages.
"""
return self.getOrDefault(self.stages)
@keyword_only
@since("1.3.0")
def setParams(self, *, stages: Optional[List["PipelineStage"]] = None) -> "Pipeline":
"""
setParams(self, \\*, stages=None)
Sets params for Pipeline.
"""
kwargs = self._input_kwargs
return self._set(**kwargs)
def _fit(self, dataset: DataFrame) -> "PipelineModel":
stages = self.getStages()
for stage in stages:
if not (isinstance(stage, Estimator) or isinstance(stage, Transformer)):
raise TypeError("Cannot recognize a pipeline stage of type %s." % type(stage))
indexOfLastEstimator = -1
for i, stage in enumerate(stages):
if isinstance(stage, Estimator):
indexOfLastEstimator = i
transformers: List[Transformer] = []
for i, stage in enumerate(stages):
if i <= indexOfLastEstimator:
if isinstance(stage, Transformer):
transformers.append(stage)
dataset = stage.transform(dataset)
else: # must be an Estimator
model = stage.fit(dataset)
transformers.append(model)
if i < indexOfLastEstimator:
dataset = model.transform(dataset)
else:
transformers.append(cast(Transformer, stage))
return PipelineModel(transformers)
def copy(self, extra: Optional["ParamMap"] = None) -> "Pipeline":
"""
Creates a copy of this instance.
.. versionadded:: 1.4.0
Parameters
----------
extra : dict, optional
extra parameters
Returns
-------
:py:class:`Pipeline`
new instance
"""
if extra is None:
extra = dict()
that = Params.copy(self, extra)
stages = [stage.copy(extra) for stage in that.getStages()]
return that.setStages(stages)
@since("2.0.0")
def write(self) -> MLWriter:
"""Returns an MLWriter instance for this ML instance."""
allStagesAreJava = PipelineSharedReadWrite.checkStagesForJava(self.getStages())
if allStagesAreJava:
return JavaMLWriter(self) # type: ignore[arg-type]
return PipelineWriter(self)
@classmethod
@since("2.0.0")
def read(cls) -> "PipelineReader":
"""Returns an MLReader instance for this class."""
return PipelineReader(cls)
@classmethod
def _from_java(cls, java_stage: "JavaObject") -> "Pipeline":
"""
Given a Java Pipeline, create and return a Python wrapper of it.
Used for ML persistence.
"""
# Create a new instance of this stage.
py_stage = cls()
# Load information from java_stage to the instance.
py_stages: List["PipelineStage"] = [
JavaParams._from_java(s) for s in java_stage.getStages()
]
py_stage.setStages(py_stages)
py_stage._resetUid(java_stage.uid())
return py_stage
def _to_java(self) -> "JavaObject":
"""
Transfer this instance to a Java Pipeline. Used for ML persistence.
Returns
-------
py4j.java_gateway.JavaObject
Java object equivalent to this instance.
"""
gateway = SparkContext._gateway
assert gateway is not None and SparkContext._jvm is not None
cls = SparkContext._jvm.org.apache.spark.ml.PipelineStage
java_stages = gateway.new_array(cls, len(self.getStages()))
for idx, stage in enumerate(self.getStages()):
java_stages[idx] = cast(JavaParams, stage)._to_java()
_java_obj = JavaParams._new_java_obj("org.apache.spark.ml.Pipeline", self.uid)
_java_obj.setStages(java_stages)
return _java_obj
@inherit_doc
class PipelineWriter(MLWriter):
"""
(Private) Specialization of :py:class:`MLWriter` for :py:class:`Pipeline` types
"""
def __init__(self, instance: Pipeline):
super(PipelineWriter, self).__init__()
self.instance = instance
def saveImpl(self, path: str) -> None:
stages = self.instance.getStages()
PipelineSharedReadWrite.validateStages(stages)
PipelineSharedReadWrite.saveImpl(self.instance, stages, self.sc, path)
@inherit_doc
class PipelineReader(MLReader[Pipeline]):
"""
(Private) Specialization of :py:class:`MLReader` for :py:class:`Pipeline` types
"""
def __init__(self, cls: Type[Pipeline]):
super(PipelineReader, self).__init__()
self.cls = cls
def load(self, path: str) -> Pipeline:
metadata = DefaultParamsReader.loadMetadata(path, self.sc)
if "language" not in metadata["paramMap"] or metadata["paramMap"]["language"] != "Python":
return JavaMLReader(cast(Type["JavaMLReadable[Pipeline]"], self.cls)).load(path)
else:
uid, stages = PipelineSharedReadWrite.load(metadata, self.sc, path)
return Pipeline(stages=stages)._resetUid(uid)
@inherit_doc
class PipelineModelWriter(MLWriter):
"""
(Private) Specialization of :py:class:`MLWriter` for :py:class:`PipelineModel` types
"""
def __init__(self, instance: "PipelineModel"):
super(PipelineModelWriter, self).__init__()
self.instance = instance
def saveImpl(self, path: str) -> None:
stages = self.instance.stages
PipelineSharedReadWrite.validateStages(cast(List["PipelineStage"], stages))
PipelineSharedReadWrite.saveImpl(
self.instance, cast(List["PipelineStage"], stages), self.sc, path
)
@inherit_doc
class PipelineModelReader(MLReader["PipelineModel"]):
"""
(Private) Specialization of :py:class:`MLReader` for :py:class:`PipelineModel` types
"""
def __init__(self, cls: Type["PipelineModel"]):
super(PipelineModelReader, self).__init__()
self.cls = cls
def load(self, path: str) -> "PipelineModel":
metadata = DefaultParamsReader.loadMetadata(path, self.sc)
if "language" not in metadata["paramMap"] or metadata["paramMap"]["language"] != "Python":
return JavaMLReader(cast(Type["JavaMLReadable[PipelineModel]"], self.cls)).load(path)
else:
uid, stages = PipelineSharedReadWrite.load(metadata, self.sc, path)
return PipelineModel(stages=cast(List[Transformer], stages))._resetUid(uid)
@inherit_doc
class PipelineModel(Model, MLReadable["PipelineModel"], MLWritable):
"""
Represents a compiled pipeline with transformers and fitted models.
.. versionadded:: 1.3.0
"""
def __init__(self, stages: List[Transformer]):
super(PipelineModel, self).__init__()
self.stages = stages
def _transform(self, dataset: DataFrame) -> DataFrame:
for t in self.stages:
dataset = t.transform(dataset)
return dataset
def copy(self, extra: Optional["ParamMap"] = None) -> "PipelineModel":
"""
Creates a copy of this instance.
.. versionadded:: 1.4.0
:param extra: extra parameters
:returns: new instance
"""
if extra is None:
extra = dict()
stages = [stage.copy(extra) for stage in self.stages]
return PipelineModel(stages)
@since("2.0.0")
def write(self) -> MLWriter:
"""Returns an MLWriter instance for this ML instance."""
allStagesAreJava = PipelineSharedReadWrite.checkStagesForJava(
cast(List["PipelineStage"], self.stages)
)
if allStagesAreJava:
return JavaMLWriter(self) # type: ignore[arg-type]
return PipelineModelWriter(self)
@classmethod
@since("2.0.0")
def read(cls) -> PipelineModelReader:
"""Returns an MLReader instance for this class."""
return PipelineModelReader(cls)
@classmethod
def _from_java(cls, java_stage: "JavaObject") -> "PipelineModel":
"""
Given a Java PipelineModel, create and return a Python wrapper of it.
Used for ML persistence.
"""
# Load information from java_stage to the instance.
py_stages: List[Transformer] = [JavaParams._from_java(s) for s in java_stage.stages()]
# Create a new instance of this stage.
py_stage = cls(py_stages)
py_stage._resetUid(java_stage.uid())
return py_stage
def _to_java(self) -> "JavaObject":
"""
Transfer this instance to a Java PipelineModel. Used for ML persistence.
:return: Java object equivalent to this instance.
"""
gateway = SparkContext._gateway
assert gateway is not None and SparkContext._jvm is not None
cls = SparkContext._jvm.org.apache.spark.ml.Transformer
java_stages = gateway.new_array(cls, len(self.stages))
for idx, stage in enumerate(self.stages):
java_stages[idx] = cast(JavaParams, stage)._to_java()
_java_obj = JavaParams._new_java_obj(
"org.apache.spark.ml.PipelineModel", self.uid, java_stages
)
return _java_obj
@inherit_doc
class PipelineSharedReadWrite:
"""
Functions for :py:class:`MLReader` and :py:class:`MLWriter` shared between
:py:class:`Pipeline` and :py:class:`PipelineModel`
.. versionadded:: 2.3.0
"""
@staticmethod
def checkStagesForJava(stages: List["PipelineStage"]) -> bool:
return all(isinstance(stage, JavaMLWritable) for stage in stages)
@staticmethod
def validateStages(stages: List["PipelineStage"]) -> None:
"""
Check that all stages are Writable
"""
for stage in stages:
if not isinstance(stage, MLWritable):
raise ValueError(
"Pipeline write will fail on this pipeline "
+ "because stage %s of type %s is not MLWritable",
stage.uid,
type(stage),
)
@staticmethod
def saveImpl(
instance: Union[Pipeline, PipelineModel],
stages: List["PipelineStage"],
sc: SparkContext,
path: str,
) -> None:
"""
Save metadata and stages for a :py:class:`Pipeline` or :py:class:`PipelineModel`
- save metadata to path/metadata
- save stages to stages/IDX_UID
"""
stageUids = [stage.uid for stage in stages]
jsonParams = {"stageUids": stageUids, "language": "Python"}
DefaultParamsWriter.saveMetadata(instance, path, sc, paramMap=jsonParams)
stagesDir = os.path.join(path, "stages")
for index, stage in enumerate(stages):
cast(MLWritable, stage).write().save(
PipelineSharedReadWrite.getStagePath(stage.uid, index, len(stages), stagesDir)
)
@staticmethod
def load(
metadata: Dict[str, Any], sc: SparkContext, path: str
) -> Tuple[str, List["PipelineStage"]]:
"""
Load metadata and stages for a :py:class:`Pipeline` or :py:class:`PipelineModel`
Returns
-------
tuple
(UID, list of stages)
"""
stagesDir = os.path.join(path, "stages")
stageUids = metadata["paramMap"]["stageUids"]
stages = []
for index, stageUid in enumerate(stageUids):
stagePath = PipelineSharedReadWrite.getStagePath(
stageUid, index, len(stageUids), stagesDir
)
stage: "PipelineStage" = DefaultParamsReader.loadParamsInstance(stagePath, sc)
stages.append(stage)
return (metadata["uid"], stages)
@staticmethod
def getStagePath(stageUid: str, stageIdx: int, numStages: int, stagesDir: str) -> str:
"""
Get path for saving the given stage.
"""
stageIdxDigits = len(str(numStages))
stageDir = str(stageIdx).zfill(stageIdxDigits) + "_" + stageUid
stagePath = os.path.join(stagesDir, stageDir)
return stagePath