forked from Kyligence/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree.py
888 lines (796 loc) · 27.5 KB
/
tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import sys
import random
from pyspark import RDD, since
from pyspark.mllib.common import callMLlibFunc, inherit_doc, JavaModelWrapper
from pyspark.mllib.linalg import _convert_to_vector
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.util import JavaLoader, JavaSaveable
from typing import Dict, Optional, Tuple, Union, overload, TYPE_CHECKING
from pyspark.rdd import RDD
if TYPE_CHECKING:
from pyspark.mllib._typing import VectorLike
__all__ = [
"DecisionTreeModel",
"DecisionTree",
"RandomForestModel",
"RandomForest",
"GradientBoostedTreesModel",
"GradientBoostedTrees",
]
class TreeEnsembleModel(JavaModelWrapper, JavaSaveable):
"""TreeEnsembleModel
.. versionadded:: 1.3.0
"""
@overload
def predict(self, x: "VectorLike") -> float:
...
@overload
def predict(self, x: RDD["VectorLike"]) -> RDD[float]:
...
def predict(self, x: Union["VectorLike", RDD["VectorLike"]]) -> Union[float, RDD[float]]:
"""
Predict values for a single data point or an RDD of points using
the model trained.
.. versionadded:: 1.3.0
Notes
-----
In Python, predict cannot currently be used within an RDD
transformation or action.
Call predict directly on the RDD instead.
"""
if isinstance(x, RDD):
return self.call("predict", x.map(_convert_to_vector))
else:
return self.call("predict", _convert_to_vector(x))
@since("1.3.0")
def numTrees(self) -> int:
"""
Get number of trees in ensemble.
"""
return self.call("numTrees")
@since("1.3.0")
def totalNumNodes(self) -> int:
"""
Get total number of nodes, summed over all trees in the ensemble.
"""
return self.call("totalNumNodes")
def __repr__(self) -> str:
"""Summary of model"""
return self._java_model.toString()
@since("1.3.0")
def toDebugString(self) -> str:
"""Full model"""
return self._java_model.toDebugString()
class DecisionTreeModel(JavaModelWrapper, JavaSaveable, JavaLoader["DecisionTreeModel"]):
"""
A decision tree model for classification or regression.
.. versionadded:: 1.1.0
"""
@overload
def predict(self, x: "VectorLike") -> float:
...
@overload
def predict(self, x: RDD["VectorLike"]) -> RDD[float]:
...
def predict(self, x: Union["VectorLike", RDD["VectorLike"]]) -> Union[float, RDD[float]]:
"""
Predict the label of one or more examples.
.. versionadded:: 1.1.0
Parameters
----------
x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD`
Data point (feature vector), or an RDD of data points (feature
vectors).
Notes
-----
In Python, predict cannot currently be used within an RDD
transformation or action.
Call predict directly on the RDD instead.
"""
if isinstance(x, RDD):
return self.call("predict", x.map(_convert_to_vector))
else:
return self.call("predict", _convert_to_vector(x))
@since("1.1.0")
def numNodes(self) -> int:
"""Get number of nodes in tree, including leaf nodes."""
return self._java_model.numNodes()
@since("1.1.0")
def depth(self) -> int:
"""
Get depth of tree (e.g. depth 0 means 1 leaf node, depth 1
means 1 internal node + 2 leaf nodes).
"""
return self._java_model.depth()
def __repr__(self) -> str:
"""summary of model."""
return self._java_model.toString()
@since("1.2.0")
def toDebugString(self) -> str:
"""full model."""
return self._java_model.toDebugString()
@classmethod
def _java_loader_class(cls) -> str:
return "org.apache.spark.mllib.tree.model.DecisionTreeModel"
class DecisionTree:
"""
Learning algorithm for a decision tree model for classification or
regression.
.. versionadded:: 1.1.0
"""
@classmethod
def _train(
cls,
data: RDD[LabeledPoint],
type: str,
numClasses: int,
features: Dict[int, int],
impurity: str = "gini",
maxDepth: int = 5,
maxBins: int = 32,
minInstancesPerNode: int = 1,
minInfoGain: float = 0.0,
) -> DecisionTreeModel:
first = data.first()
assert isinstance(first, LabeledPoint), "the data should be RDD of LabeledPoint"
model = callMLlibFunc(
"trainDecisionTreeModel",
data,
type,
numClasses,
features,
impurity,
maxDepth,
maxBins,
minInstancesPerNode,
minInfoGain,
)
return DecisionTreeModel(model)
@classmethod
def trainClassifier(
cls,
data: RDD[LabeledPoint],
numClasses: int,
categoricalFeaturesInfo: Dict[int, int],
impurity: str = "gini",
maxDepth: int = 5,
maxBins: int = 32,
minInstancesPerNode: int = 1,
minInfoGain: float = 0.0,
) -> DecisionTreeModel:
"""
Train a decision tree model for classification.
.. versionadded:: 1.1.0
Parameters
----------
data : :py:class:`pyspark.RDD`
Training data: RDD of LabeledPoint. Labels should take values
{0, 1, ..., numClasses-1}.
numClasses : int
Number of classes for classification.
categoricalFeaturesInfo : dict
Map storing arity of categorical features. An entry (n -> k)
indicates that feature n is categorical with k categories
indexed from 0: {0, 1, ..., k-1}.
impurity : str, optional
Criterion used for information gain calculation.
Supported values: "gini" or "entropy".
(default: "gini")
maxDepth : int, optional
Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1
means 1 internal node + 2 leaf nodes).
(default: 5)
maxBins : int, optional
Number of bins used for finding splits at each node.
(default: 32)
minInstancesPerNode : int, optional
Minimum number of instances required at child nodes to create
the parent split.
(default: 1)
minInfoGain : float, optional
Minimum info gain required to create a split.
(default: 0.0)
Returns
-------
:py:class:`DecisionTreeModel`
Examples
--------
>>> from numpy import array
>>> from pyspark.mllib.regression import LabeledPoint
>>> from pyspark.mllib.tree import DecisionTree
>>>
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>> model = DecisionTree.trainClassifier(sc.parallelize(data), 2, {})
>>> print(model)
DecisionTreeModel classifier of depth 1 with 3 nodes
>>> print(model.toDebugString())
DecisionTreeModel classifier of depth 1 with 3 nodes
If (feature 0 <= 0.5)
Predict: 0.0
Else (feature 0 > 0.5)
Predict: 1.0
>>> model.predict(array([1.0]))
1.0
>>> model.predict(array([0.0]))
0.0
>>> rdd = sc.parallelize([[1.0], [0.0]])
>>> model.predict(rdd).collect()
[1.0, 0.0]
"""
return cls._train(
data,
"classification",
numClasses,
categoricalFeaturesInfo,
impurity,
maxDepth,
maxBins,
minInstancesPerNode,
minInfoGain,
)
@classmethod
@since("1.1.0")
def trainRegressor(
cls,
data: RDD[LabeledPoint],
categoricalFeaturesInfo: Dict[int, int],
impurity: str = "variance",
maxDepth: int = 5,
maxBins: int = 32,
minInstancesPerNode: int = 1,
minInfoGain: float = 0.0,
) -> DecisionTreeModel:
"""
Train a decision tree model for regression.
Parameters
----------
data : :py:class:`pyspark.RDD`
Training data: RDD of LabeledPoint. Labels are real numbers.
categoricalFeaturesInfo : dict
Map storing arity of categorical features. An entry (n -> k)
indicates that feature n is categorical with k categories
indexed from 0: {0, 1, ..., k-1}.
impurity : str, optional
Criterion used for information gain calculation.
The only supported value for regression is "variance".
(default: "variance")
maxDepth : int, optional
Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1
means 1 internal node + 2 leaf nodes).
(default: 5)
maxBins : int, optional
Number of bins used for finding splits at each node.
(default: 32)
minInstancesPerNode : int, optional
Minimum number of instances required at child nodes to create
the parent split.
(default: 1)
minInfoGain : float, optional
Minimum info gain required to create a split.
(default: 0.0)
Returns
-------
:py:class:`DecisionTreeModel`
Examples
--------
>>> from pyspark.mllib.regression import LabeledPoint
>>> from pyspark.mllib.tree import DecisionTree
>>> from pyspark.mllib.linalg import SparseVector
>>>
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>>
>>> model = DecisionTree.trainRegressor(sc.parallelize(sparse_data), {})
>>> model.predict(SparseVector(2, {1: 1.0}))
1.0
>>> model.predict(SparseVector(2, {1: 0.0}))
0.0
>>> rdd = sc.parallelize([[0.0, 1.0], [0.0, 0.0]])
>>> model.predict(rdd).collect()
[1.0, 0.0]
"""
return cls._train(
data,
"regression",
0,
categoricalFeaturesInfo,
impurity,
maxDepth,
maxBins,
minInstancesPerNode,
minInfoGain,
)
@inherit_doc
class RandomForestModel(TreeEnsembleModel, JavaLoader["RandomForestModel"]):
"""
Represents a random forest model.
.. versionadded:: 1.2.0
"""
@classmethod
def _java_loader_class(cls) -> str:
return "org.apache.spark.mllib.tree.model.RandomForestModel"
class RandomForest:
"""
Learning algorithm for a random forest model for classification or
regression.
.. versionadded:: 1.2.0
"""
supportedFeatureSubsetStrategies: Tuple[str, ...] = ("auto", "all", "sqrt", "log2", "onethird")
@classmethod
def _train(
cls,
data: RDD[LabeledPoint],
algo: str,
numClasses: int,
categoricalFeaturesInfo: Dict[int, int],
numTrees: int,
featureSubsetStrategy: str,
impurity: str,
maxDepth: int,
maxBins: int,
seed: Optional[int],
) -> RandomForestModel:
first = data.first()
assert isinstance(first, LabeledPoint), "the data should be RDD of LabeledPoint"
if featureSubsetStrategy not in cls.supportedFeatureSubsetStrategies:
raise ValueError("unsupported featureSubsetStrategy: %s" % featureSubsetStrategy)
if seed is None:
seed = random.randint(0, 1 << 30)
model = callMLlibFunc(
"trainRandomForestModel",
data,
algo,
numClasses,
categoricalFeaturesInfo,
numTrees,
featureSubsetStrategy,
impurity,
maxDepth,
maxBins,
seed,
)
return RandomForestModel(model)
@classmethod
def trainClassifier(
cls,
data: RDD[LabeledPoint],
numClasses: int,
categoricalFeaturesInfo: Dict[int, int],
numTrees: int,
featureSubsetStrategy: str = "auto",
impurity: str = "gini",
maxDepth: int = 4,
maxBins: int = 32,
seed: Optional[int] = None,
) -> RandomForestModel:
"""
Train a random forest model for binary or multiclass
classification.
.. versionadded:: 1.2.0
Parameters
----------
data : :py:class:`pyspark.RDD`
Training dataset: RDD of LabeledPoint. Labels should take values
{0, 1, ..., numClasses-1}.
numClasses : int
Number of classes for classification.
categoricalFeaturesInfo : dict
Map storing arity of categorical features. An entry (n -> k)
indicates that feature n is categorical with k categories
indexed from 0: {0, 1, ..., k-1}.
numTrees : int
Number of trees in the random forest.
featureSubsetStrategy : str, optional
Number of features to consider for splits at each node.
Supported values: "auto", "all", "sqrt", "log2", "onethird".
If "auto" is set, this parameter is set based on numTrees:
if numTrees == 1, set to "all";
if numTrees > 1 (forest) set to "sqrt".
(default: "auto")
impurity : str, optional
Criterion used for information gain calculation.
Supported values: "gini" or "entropy".
(default: "gini")
maxDepth : int, optional
Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1
means 1 internal node + 2 leaf nodes).
(default: 4)
maxBins : int, optional
Maximum number of bins used for splitting features.
(default: 32)
seed : int, Optional
Random seed for bootstrapping and choosing feature subsets.
Set as None to generate seed based on system time.
(default: None)
Returns
-------
:py:class:`RandomForestModel`
that can be used for prediction.
Examples
--------
>>> from pyspark.mllib.regression import LabeledPoint
>>> from pyspark.mllib.tree import RandomForest
>>>
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(0.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>> model = RandomForest.trainClassifier(sc.parallelize(data), 2, {}, 3, seed=42)
>>> model.numTrees()
3
>>> model.totalNumNodes()
7
>>> print(model)
TreeEnsembleModel classifier with 3 trees
>>> print(model.toDebugString())
TreeEnsembleModel classifier with 3 trees
Tree 0:
Predict: 1.0
Tree 1:
If (feature 0 <= 1.5)
Predict: 0.0
Else (feature 0 > 1.5)
Predict: 1.0
Tree 2:
If (feature 0 <= 1.5)
Predict: 0.0
Else (feature 0 > 1.5)
Predict: 1.0
>>> model.predict([2.0])
1.0
>>> model.predict([0.0])
0.0
>>> rdd = sc.parallelize([[3.0], [1.0]])
>>> model.predict(rdd).collect()
[1.0, 0.0]
"""
return cls._train(
data,
"classification",
numClasses,
categoricalFeaturesInfo,
numTrees,
featureSubsetStrategy,
impurity,
maxDepth,
maxBins,
seed,
)
@classmethod
def trainRegressor(
cls,
data: RDD[LabeledPoint],
categoricalFeaturesInfo: Dict[int, int],
numTrees: int,
featureSubsetStrategy: str = "auto",
impurity: str = "variance",
maxDepth: int = 4,
maxBins: int = 32,
seed: Optional[int] = None,
) -> RandomForestModel:
"""
Train a random forest model for regression.
.. versionadded:: 1.2.0
Parameters
----------
data : :py:class:`pyspark.RDD`
Training dataset: RDD of LabeledPoint. Labels are real numbers.
categoricalFeaturesInfo : dict
Map storing arity of categorical features. An entry (n -> k)
indicates that feature n is categorical with k categories
indexed from 0: {0, 1, ..., k-1}.
numTrees : int
Number of trees in the random forest.
featureSubsetStrategy : str, optional
Number of features to consider for splits at each node.
Supported values: "auto", "all", "sqrt", "log2", "onethird".
If "auto" is set, this parameter is set based on numTrees:
- if numTrees == 1, set to "all";
- if numTrees > 1 (forest) set to "onethird" for regression.
(default: "auto")
impurity : str, optional
Criterion used for information gain calculation.
The only supported value for regression is "variance".
(default: "variance")
maxDepth : int, optional
Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1
means 1 internal node + 2 leaf nodes).
(default: 4)
maxBins : int, optional
Maximum number of bins used for splitting features.
(default: 32)
seed : int, optional
Random seed for bootstrapping and choosing feature subsets.
Set as None to generate seed based on system time.
(default: None)
Returns
-------
:py:class:`RandomForestModel`
that can be used for prediction.
Examples
--------
>>> from pyspark.mllib.regression import LabeledPoint
>>> from pyspark.mllib.tree import RandomForest
>>> from pyspark.mllib.linalg import SparseVector
>>>
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>>
>>> model = RandomForest.trainRegressor(sc.parallelize(sparse_data), {}, 2, seed=42)
>>> model.numTrees()
2
>>> model.totalNumNodes()
4
>>> model.predict(SparseVector(2, {1: 1.0}))
1.0
>>> model.predict(SparseVector(2, {0: 1.0}))
0.5
>>> rdd = sc.parallelize([[0.0, 1.0], [1.0, 0.0]])
>>> model.predict(rdd).collect()
[1.0, 0.5]
"""
return cls._train(
data,
"regression",
0,
categoricalFeaturesInfo,
numTrees,
featureSubsetStrategy,
impurity,
maxDepth,
maxBins,
seed,
)
@inherit_doc
class GradientBoostedTreesModel(TreeEnsembleModel, JavaLoader["GradientBoostedTreesModel"]):
"""
Represents a gradient-boosted tree model.
.. versionadded:: 1.3.0
"""
@classmethod
def _java_loader_class(cls) -> str:
return "org.apache.spark.mllib.tree.model.GradientBoostedTreesModel"
class GradientBoostedTrees:
"""
Learning algorithm for a gradient boosted trees model for
classification or regression.
.. versionadded:: 1.3.0
"""
@classmethod
def _train(
cls,
data: RDD[LabeledPoint],
algo: str,
categoricalFeaturesInfo: Dict[int, int],
loss: str,
numIterations: int,
learningRate: float,
maxDepth: int,
maxBins: int,
) -> GradientBoostedTreesModel:
first = data.first()
assert isinstance(first, LabeledPoint), "the data should be RDD of LabeledPoint"
model = callMLlibFunc(
"trainGradientBoostedTreesModel",
data,
algo,
categoricalFeaturesInfo,
loss,
numIterations,
learningRate,
maxDepth,
maxBins,
)
return GradientBoostedTreesModel(model)
@classmethod
def trainClassifier(
cls,
data: RDD[LabeledPoint],
categoricalFeaturesInfo: Dict[int, int],
loss: str = "logLoss",
numIterations: int = 100,
learningRate: float = 0.1,
maxDepth: int = 3,
maxBins: int = 32,
) -> GradientBoostedTreesModel:
"""
Train a gradient-boosted trees model for classification.
.. versionadded:: 1.3.0
Parameters
----------
data : :py:class:`pyspark.RDD`
Training dataset: RDD of LabeledPoint. Labels should take values
{0, 1}.
categoricalFeaturesInfo : dict
Map storing arity of categorical features. An entry (n -> k)
indicates that feature n is categorical with k categories
indexed from 0: {0, 1, ..., k-1}.
loss : str, optional
Loss function used for minimization during gradient boosting.
Supported values: "logLoss", "leastSquaresError",
"leastAbsoluteError".
(default: "logLoss")
numIterations : int, optional
Number of iterations of boosting.
(default: 100)
learningRate : float, optional
Learning rate for shrinking the contribution of each estimator.
The learning rate should be between in the interval (0, 1].
(default: 0.1)
maxDepth : int, optional
Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1
means 1 internal node + 2 leaf nodes).
(default: 3)
maxBins : int, optional
Maximum number of bins used for splitting features. DecisionTree
requires maxBins >= max categories.
(default: 32)
Returns
-------
:py:class:`GradientBoostedTreesModel`
that can be used for prediction.
Examples
--------
>>> from pyspark.mllib.regression import LabeledPoint
>>> from pyspark.mllib.tree import GradientBoostedTrees
>>>
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(0.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>>
>>> model = GradientBoostedTrees.trainClassifier(sc.parallelize(data), {}, numIterations=10)
>>> model.numTrees()
10
>>> model.totalNumNodes()
30
>>> print(model) # it already has newline
TreeEnsembleModel classifier with 10 trees
>>> model.predict([2.0])
1.0
>>> model.predict([0.0])
0.0
>>> rdd = sc.parallelize([[2.0], [0.0]])
>>> model.predict(rdd).collect()
[1.0, 0.0]
"""
return cls._train(
data,
"classification",
categoricalFeaturesInfo,
loss,
numIterations,
learningRate,
maxDepth,
maxBins,
)
@classmethod
def trainRegressor(
cls,
data: RDD[LabeledPoint],
categoricalFeaturesInfo: Dict[int, int],
loss: str = "leastSquaresError",
numIterations: int = 100,
learningRate: float = 0.1,
maxDepth: int = 3,
maxBins: int = 32,
) -> GradientBoostedTreesModel:
"""
Train a gradient-boosted trees model for regression.
.. versionadded:: 1.3.0
Parameters
----------
data :
Training dataset: RDD of LabeledPoint. Labels are real numbers.
categoricalFeaturesInfo : dict
Map storing arity of categorical features. An entry (n -> k)
indicates that feature n is categorical with k categories
indexed from 0: {0, 1, ..., k-1}.
loss : str, optional
Loss function used for minimization during gradient boosting.
Supported values: "logLoss", "leastSquaresError",
"leastAbsoluteError".
(default: "leastSquaresError")
numIterations : int, optional
Number of iterations of boosting.
(default: 100)
learningRate : float, optional
Learning rate for shrinking the contribution of each estimator.
The learning rate should be between in the interval (0, 1].
(default: 0.1)
maxDepth : int, optional
Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1
means 1 internal node + 2 leaf nodes).
(default: 3)
maxBins : int, optional
Maximum number of bins used for splitting features. DecisionTree
requires maxBins >= max categories.
(default: 32)
Returns
-------
:py:class:`GradientBoostedTreesModel`
that can be used for prediction.
Examples
--------
>>> from pyspark.mllib.regression import LabeledPoint
>>> from pyspark.mllib.tree import GradientBoostedTrees
>>> from pyspark.mllib.linalg import SparseVector
>>>
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>>
>>> data = sc.parallelize(sparse_data)
>>> model = GradientBoostedTrees.trainRegressor(data, {}, numIterations=10)
>>> model.numTrees()
10
>>> model.totalNumNodes()
12
>>> model.predict(SparseVector(2, {1: 1.0}))
1.0
>>> model.predict(SparseVector(2, {0: 1.0}))
0.0
>>> rdd = sc.parallelize([[0.0, 1.0], [1.0, 0.0]])
>>> model.predict(rdd).collect()
[1.0, 0.0]
"""
return cls._train(
data,
"regression",
categoricalFeaturesInfo,
loss,
numIterations,
learningRate,
maxDepth,
maxBins,
)
def _test() -> None:
import doctest
globs = globals().copy()
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local[4]").appName("mllib.tree tests").getOrCreate()
globs["sc"] = spark.sparkContext
(failure_count, test_count) = doctest.testmod(
globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE
)
spark.stop()
if failure_count:
sys.exit(-1)
if __name__ == "__main__":
_test()