forked from Kyligence/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprofiler.py
487 lines (413 loc) · 16.8 KB
/
profiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import (
Any,
Callable,
Dict,
List,
Optional,
Tuple,
Type,
TYPE_CHECKING,
Union,
cast,
)
import cProfile
import inspect
import pstats
import linecache
import os
import atexit
import sys
import warnings
try:
from memory_profiler import choose_backend, CodeMap, LineProfiler # type: ignore[import]
has_memory_profiler = True
except Exception:
has_memory_profiler = False
from pyspark.accumulators import AccumulatorParam
if TYPE_CHECKING:
from pyspark.context import SparkContext
MemoryTuple = Tuple[float, float, int]
LineProfile = Tuple[int, Optional[MemoryTuple]]
CodeMapDict = Dict[str, List[LineProfile]]
class ProfilerCollector:
"""
This class keeps track of different profilers on a per
stage/UDF basis. Also this is used to create new profilers for
the different stages/UDFs.
"""
def __init__(
self,
profiler_cls: Type["Profiler"],
udf_profiler_cls: Type["Profiler"],
memory_profiler_cls: Type["Profiler"],
dump_path: Optional[str] = None,
):
self.profiler_cls: Type[Profiler] = profiler_cls
self.udf_profiler_cls: Type[Profiler] = udf_profiler_cls
self.memory_profiler_cls: Type[Profiler] = memory_profiler_cls
self.profile_dump_path: Optional[str] = dump_path
self.profilers: List[List[Any]] = []
def new_profiler(self, ctx: "SparkContext") -> "Profiler":
"""Create a new profiler using class `profiler_cls`"""
return self.profiler_cls(ctx)
def new_udf_profiler(self, ctx: "SparkContext") -> "Profiler":
"""Create a new profiler using class `udf_profiler_cls`"""
return self.udf_profiler_cls(ctx)
def new_memory_profiler(self, ctx: "SparkContext") -> "Profiler":
"""Create a new profiler using class `memory_profiler_cls`"""
return self.memory_profiler_cls(ctx)
def add_profiler(self, id: int, profiler: "Profiler") -> None:
"""Add a profiler for RDD/UDF `id`"""
if not self.profilers:
if self.profile_dump_path:
atexit.register(self.dump_profiles, self.profile_dump_path)
else:
atexit.register(self.show_profiles)
self.profilers.append([id, profiler, False])
def dump_profiles(self, path: str) -> None:
"""Dump the profile stats into directory `path`"""
for id, profiler, _ in self.profilers:
profiler.dump(id, path)
self.profilers = []
def show_profiles(self) -> None:
"""Print the profile stats to stdout"""
for i, (id, profiler, showed) in enumerate(self.profilers):
if not showed and profiler:
profiler.show(id)
# mark it as showed
self.profilers[i][2] = True
class Profiler:
"""
PySpark supports custom profilers, this is to allow for different profilers to
be used as well as outputting to different formats than what is provided in the
BasicProfiler.
A custom profiler has to define or inherit the following methods:
profile - will produce a system profile of some sort.
stats - return the collected stats.
dump - dumps the profiles to a path
add - adds a profile to the existing accumulated profile
The profiler class is chosen when creating a SparkContext
Examples
--------
>>> from pyspark import SparkConf, SparkContext
>>> from pyspark import BasicProfiler
>>> class MyCustomProfiler(BasicProfiler):
... def show(self, id):
... print("My custom profiles for RDD:%s" % id)
...
>>> conf = SparkConf().set("spark.python.profile", "true")
>>> sc = SparkContext('local', 'test', conf=conf, profiler_cls=MyCustomProfiler)
>>> sc.parallelize(range(1000)).map(lambda x: 2 * x).take(10)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
>>> sc.parallelize(range(1000)).count()
1000
>>> sc.show_profiles()
My custom profiles for RDD:1
My custom profiles for RDD:3
>>> sc.stop()
Notes
-----
This API is a developer API.
"""
def __init__(self, ctx: "SparkContext") -> None:
pass
def profile(self, func: Callable[..., Any], *args: Any, **kwargs: Any) -> Any:
"""Do profiling on the function `func`"""
raise NotImplementedError
def stats(self) -> Union[pstats.Stats, Dict]:
"""Return the collected profiling stats"""
raise NotImplementedError
def show(self, id: int) -> None:
"""Print the profile stats to stdout"""
raise NotImplementedError
def dump(self, id: int, path: str) -> None:
"""Dump the profile into path"""
raise NotImplementedError
if has_memory_profiler:
class CodeMapForUDF(CodeMap):
def add(
self,
code: Any,
toplevel_code: Optional[Any] = None,
*,
sub_lines: Optional[List] = None,
start_line: Optional[int] = None,
) -> None:
if code in self:
return
if toplevel_code is None:
toplevel_code = code
filename = code.co_filename
if sub_lines is None or start_line is None:
(sub_lines, start_line) = inspect.getsourcelines(code)
linenos = range(start_line, start_line + len(sub_lines))
self._toplevel.append((filename, code, linenos))
self[code] = {}
else:
self[code] = self[toplevel_code]
for subcode in filter(inspect.iscode, code.co_consts):
self.add(subcode, toplevel_code=toplevel_code)
class UDFLineProfiler(LineProfiler):
def __init__(self, **kw: Any) -> None:
include_children = kw.get("include_children", False)
backend = kw.get("backend", "psutil")
self.code_map = CodeMapForUDF(include_children=include_children, backend=backend)
self.enable_count = 0
self.max_mem = kw.get("max_mem", None)
self.prevlines: List = []
self.backend = choose_backend(kw.get("backend", None))
self.prev_lineno = None
def __call__(
self,
func: Optional[Callable[..., Any]] = None,
precision: int = 1,
*,
sub_lines: Optional[List] = None,
start_line: Optional[int] = None,
) -> Callable[..., Any]:
if func is not None:
self.add_function(func, sub_lines=sub_lines, start_line=start_line)
f = self.wrap_function(func)
f.__module__ = func.__module__
f.__name__ = func.__name__
f.__doc__ = func.__doc__
f.__dict__.update(getattr(func, "__dict__", {}))
return f
else:
def inner_partial(f: Callable[..., Any]) -> Any:
return self.__call__(f, precision=precision)
return inner_partial
def add_function(
self,
func: Callable[..., Any],
*,
sub_lines: Optional[List] = None,
start_line: Optional[int] = None,
) -> None:
"""Record line profiling information for the given Python function."""
try:
# func_code does not exist in Python3
code = func.__code__
except AttributeError:
warnings.warn("Could not extract a code object for the object %r" % func)
else:
self.code_map.add(code, sub_lines=sub_lines, start_line=start_line)
class PStatsParam(AccumulatorParam[Optional[pstats.Stats]]):
"""PStatsParam is used to merge pstats.Stats"""
@staticmethod
def zero(value: Optional[pstats.Stats]) -> None:
return None
@staticmethod
def addInPlace(
value1: Optional[pstats.Stats], value2: Optional[pstats.Stats]
) -> Optional[pstats.Stats]:
if value1 is None:
return value2
value1.add(value2)
return value1
class MemUsageParam(AccumulatorParam[Optional[CodeMapDict]]):
"""MemUsageParam is used to merge memory usage code map"""
@staticmethod
def zero(value: Optional[CodeMapDict]) -> None:
return None
@staticmethod
def addInPlace(
value1: Optional[CodeMapDict], value2: Optional[CodeMapDict]
) -> Optional[CodeMapDict]:
# An example value looks as below
# {'<command-1598004922717618>': [(3, (144.2578125, 144.2578125, 1)),
# (4, (0.0, 144.2578125, 1))]}
if value1 is None or len(value1) == 0:
return value2
if value2 is None or len(value2) == 0:
return value1
# value1, value2 should have same keys - file name
for filename in value1:
l1 = cast(List[LineProfile], value1.get(filename))
l2 = cast(List[LineProfile], value2.get(filename))
c1 = dict((k, v) for k, v in l1)
c2 = dict((k, v) for k, v in l2)
udf_code_map: Dict[int, Optional[MemoryTuple]] = {}
for lineno in c1:
if c1[lineno] and c2[lineno]:
# c1, c2 should have same keys - line number
udf_code_map[lineno] = (
cast(MemoryTuple, c1[lineno])[0]
+ cast(MemoryTuple, c2[lineno])[0], # increment
cast(MemoryTuple, c1[lineno])[1]
+ cast(MemoryTuple, c2[lineno])[1], # mem_usage
cast(MemoryTuple, c1[lineno])[2]
+ cast(MemoryTuple, c2[lineno])[2], # occurrences
)
elif c1[lineno]:
udf_code_map[lineno] = cast(MemoryTuple, c1[lineno])
elif c2[lineno]:
udf_code_map[lineno] = cast(MemoryTuple, c2[lineno])
else:
udf_code_map[lineno] = None
value1[filename] = [(k, v) for k, v in udf_code_map.items()]
return value1
class BasicProfiler(Profiler):
"""
BasicProfiler is the default profiler, which is implemented based on
cProfile and Accumulator
"""
def __init__(self, ctx: "SparkContext") -> None:
super().__init__(ctx)
# Creates a new accumulator for combining the profiles of different
# partitions of a stage
self._accumulator = ctx.accumulator(None, PStatsParam) # type: ignore[arg-type]
def profile(self, func: Callable[..., Any], *args: Any, **kwargs: Any) -> Any:
"""Runs and profiles the method to_profile passed in. A profile object is returned."""
pr = cProfile.Profile()
ret = pr.runcall(func, *args, **kwargs)
st = pstats.Stats(pr)
st.stream = None # type: ignore[attr-defined] # make it picklable
st.strip_dirs()
# Adds a new profile to the existing accumulated value
self._accumulator.add(st) # type: ignore[arg-type]
return ret
def stats(self) -> pstats.Stats:
return cast(pstats.Stats, self._accumulator.value)
def show(self, id: int) -> None:
"""Print the profile stats to stdout, id is the RDD id"""
stats = self.stats()
if stats:
print("=" * 60)
print("Profile of RDD<id=%d>" % id)
print("=" * 60)
stats.sort_stats("time", "cumulative").print_stats()
def dump(self, id: int, path: str) -> None:
"""Dump the profile into path, id is the RDD id"""
if not os.path.exists(path):
os.makedirs(path)
stats = self.stats()
if stats:
p = os.path.join(path, "rdd_%d.pstats" % id)
stats.dump_stats(p)
class UDFBasicProfiler(BasicProfiler):
"""
UDFBasicProfiler is the profiler for Python/Pandas UDFs.
"""
def show(self, id: int) -> None:
"""Print the profile stats to stdout, id is the PythonUDF id"""
stats = self.stats()
if stats:
print("=" * 60)
print("Profile of UDF<id=%d>" % id)
print("=" * 60)
stats.sort_stats("time", "cumulative").print_stats()
def dump(self, id: int, path: str) -> None:
"""Dump the profile into path, id is the PythonUDF id"""
if not os.path.exists(path):
os.makedirs(path)
stats = self.stats()
if stats:
p = os.path.join(path, "udf_%d.pstats" % id)
stats.dump_stats(p)
class MemoryProfiler(Profiler):
"""
MemoryProfiler, which is implemented based on memory profiler and Accumulator
"""
def __init__(self, ctx: "SparkContext") -> None:
super().__init__(ctx)
# Creates a new accumulator for combining the profiles
self._accumulator = ctx.accumulator(None, MemUsageParam) # type: ignore[arg-type]
def profile( # type: ignore
self,
sub_lines: Optional[List],
start_line: Optional[int],
func: Callable[..., Any],
*args: Any,
**kwargs: Any,
) -> Any:
"""Runs and profiles the method func passed in. A profile object is returned."""
if has_memory_profiler:
profiler = UDFLineProfiler()
wrapped = profiler(func, sub_lines=sub_lines, start_line=start_line)
ret = wrapped(*args, **kwargs)
codemap_dict = {
filename: list(line_iterator)
for filename, line_iterator in profiler.code_map.items()
}
# Adds a new profile to the existing accumulated value
self._accumulator.add(codemap_dict) # type: ignore[arg-type]
return ret
else:
raise RuntimeError(
"Install the 'memory_profiler' library in the cluster to enable memory profiling."
)
def stats(self) -> CodeMapDict:
"""Return the collected memory profiles"""
return cast(CodeMapDict, self._accumulator.value)
def _show_results(
self, code_map: CodeMapDict, stream: Optional[Any] = None, precision: int = 1
) -> None:
if stream is None:
stream = sys.stdout
template = "{0:>6} {1:>12} {2:>12} {3:>10} {4:<}"
for (filename, lines) in code_map.items():
header = template.format(
"Line #", "Mem usage", "Increment", "Occurrences", "Line Contents"
)
stream.write("Filename: " + filename + "\n\n")
stream.write(header + "\n")
stream.write("=" * len(header) + "\n")
all_lines = linecache.getlines(filename)
float_format = "{0}.{1}f".format(precision + 4, precision)
template_mem = "{0:" + float_format + "} MiB"
for (lineno, mem) in lines:
total_mem: Union[float, str]
inc: Union[float, str]
occurrences: Union[float, str]
if mem:
inc = mem[0]
total_mem = mem[1]
total_mem = template_mem.format(total_mem)
occurrences = mem[2]
inc = template_mem.format(inc)
else:
total_mem = ""
inc = ""
occurrences = ""
tmp = template.format(lineno, total_mem, inc, occurrences, all_lines[lineno - 1])
stream.write(tmp)
stream.write("\n\n")
def show(self, id: int) -> None:
"""Print the profile stats to stdout, id is the PythonUDF id"""
code_map = self.stats()
if code_map:
print("=" * 60)
print("Profile of UDF<id=%d>" % id)
print("=" * 60)
self._show_results(code_map)
def dump(self, id: int, path: str) -> None:
"""Dump the memory profile into path, id is the PythonUDF id"""
if not os.path.exists(path):
os.makedirs(path)
stats = self.stats() # dict
if stats:
p = os.path.join(path, "udf_%d_memory.txt" % id)
with open(p, "w+") as f:
self._show_results(stats, stream=f)
if __name__ == "__main__":
import doctest
(failure_count, test_count) = doctest.testmod()
if failure_count:
sys.exit(-1)