forked from Kyligence/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworker.py
910 lines (757 loc) · 36.2 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Worker that receives input from Piped RDD.
"""
import os
import sys
import time
from inspect import currentframe, getframeinfo, getfullargspec
import importlib
import json
# 'resource' is a Unix specific module.
has_resource_module = True
try:
import resource
except ImportError:
has_resource_module = False
import traceback
import warnings
import faulthandler
from pyspark.accumulators import _accumulatorRegistry
from pyspark.broadcast import Broadcast, _broadcastRegistry
from pyspark.java_gateway import local_connect_and_auth
from pyspark.taskcontext import BarrierTaskContext, TaskContext
from pyspark.files import SparkFiles
from pyspark.resource import ResourceInformation
from pyspark.rdd import PythonEvalType
from pyspark.serializers import (
write_with_length,
write_int,
read_long,
read_bool,
write_long,
read_int,
SpecialLengths,
UTF8Deserializer,
CPickleSerializer,
BatchedSerializer,
)
from pyspark.sql.pandas.serializers import (
ArrowStreamPandasUDFSerializer,
CogroupUDFSerializer,
ArrowStreamUDFSerializer,
ApplyInPandasWithStateSerializer,
)
from pyspark.sql.pandas.types import to_arrow_type
from pyspark.sql.types import StructType
from pyspark.util import fail_on_stopiteration, try_simplify_traceback
from pyspark import shuffle
pickleSer = CPickleSerializer()
utf8_deserializer = UTF8Deserializer()
def report_times(outfile, boot, init, finish):
write_int(SpecialLengths.TIMING_DATA, outfile)
write_long(int(1000 * boot), outfile)
write_long(int(1000 * init), outfile)
write_long(int(1000 * finish), outfile)
def add_path(path):
# worker can be used, so do not add path multiple times
if path not in sys.path:
# overwrite system packages
sys.path.insert(1, path)
def read_command(serializer, file):
command = serializer._read_with_length(file)
if isinstance(command, Broadcast):
command = serializer.loads(command.value)
return command
def chain(f, g):
"""chain two functions together"""
return lambda *a: g(f(*a))
def wrap_udf(f, return_type):
if return_type.needConversion():
toInternal = return_type.toInternal
return lambda *a: toInternal(f(*a))
else:
return lambda *a: f(*a)
def wrap_scalar_pandas_udf(f, return_type):
arrow_return_type = to_arrow_type(return_type)
def verify_result_type(result):
if not hasattr(result, "__len__"):
pd_type = "Pandas.DataFrame" if type(return_type) == StructType else "Pandas.Series"
raise TypeError(
"Return type of the user-defined function should be "
"{}, but is {}".format(pd_type, type(result))
)
return result
def verify_result_length(result, length):
if len(result) != length:
raise RuntimeError(
"Result vector from pandas_udf was not the required length: "
"expected %d, got %d" % (length, len(result))
)
return result
return lambda *a: (
verify_result_length(verify_result_type(f(*a)), len(a[0])),
arrow_return_type,
)
def wrap_batch_iter_udf(f, return_type):
arrow_return_type = to_arrow_type(return_type)
def verify_result_type(result):
if not hasattr(result, "__len__"):
pd_type = "Pandas.DataFrame" if type(return_type) == StructType else "Pandas.Series"
raise TypeError(
"Return type of the user-defined function should be "
"{}, but is {}".format(pd_type, type(result))
)
return result
return lambda *iterator: map(
lambda res: (res, arrow_return_type), map(verify_result_type, f(*iterator))
)
def verify_pandas_result(result, return_type, assign_cols_by_name):
import pandas as pd
if not isinstance(result, pd.DataFrame):
raise TypeError(
"Return type of the user-defined function should be "
"pandas.DataFrame, but is {}".format(type(result))
)
# check the schema of the result only if it is not empty or has columns
if not result.empty or len(result.columns) != 0:
# if any column name of the result is a string
# the column names of the result have to match the return type
# see create_array in pyspark.sql.pandas.serializers.ArrowStreamPandasSerializer
field_names = set([field.name for field in return_type.fields])
column_names = set(result.columns)
if (
assign_cols_by_name
and any(isinstance(name, str) for name in result.columns)
and column_names != field_names
):
missing = sorted(list(field_names.difference(column_names)))
missing = f" Missing: {', '.join(missing)}." if missing else ""
extra = sorted(list(column_names.difference(field_names)))
extra = f" Unexpected: {', '.join(extra)}." if extra else ""
raise RuntimeError(
"Column names of the returned pandas.DataFrame do not match specified schema."
"{}{}".format(missing, extra)
)
# otherwise the number of columns of result have to match the return type
elif len(result.columns) != len(return_type):
raise RuntimeError(
"Number of columns of the returned pandas.DataFrame "
"doesn't match specified schema. "
"Expected: {} Actual: {}".format(len(return_type), len(result.columns))
)
def wrap_cogrouped_map_pandas_udf(f, return_type, argspec, runner_conf):
_assign_cols_by_name = assign_cols_by_name(runner_conf)
def wrapped(left_key_series, left_value_series, right_key_series, right_value_series):
import pandas as pd
left_df = pd.concat(left_value_series, axis=1)
right_df = pd.concat(right_value_series, axis=1)
if len(argspec.args) == 2:
result = f(left_df, right_df)
elif len(argspec.args) == 3:
key_series = left_key_series if not left_df.empty else right_key_series
key = tuple(s[0] for s in key_series)
result = f(key, left_df, right_df)
verify_pandas_result(result, return_type, _assign_cols_by_name)
return result
return lambda kl, vl, kr, vr: [(wrapped(kl, vl, kr, vr), to_arrow_type(return_type))]
def wrap_grouped_map_pandas_udf(f, return_type, argspec, runner_conf):
_assign_cols_by_name = assign_cols_by_name(runner_conf)
def wrapped(key_series, value_series):
import pandas as pd
if len(argspec.args) == 1:
result = f(pd.concat(value_series, axis=1))
elif len(argspec.args) == 2:
key = tuple(s[0] for s in key_series)
result = f(key, pd.concat(value_series, axis=1))
verify_pandas_result(result, return_type, _assign_cols_by_name)
return result
return lambda k, v: [(wrapped(k, v), to_arrow_type(return_type))]
def wrap_grouped_map_pandas_udf_with_state(f, return_type):
"""
Provides a new lambda instance wrapping user function of applyInPandasWithState.
The lambda instance receives (key series, iterator of value series, state) and performs
some conversion to be adapted with the signature of user function.
See the function doc of inner function `wrapped` for more details on what adapter does.
See the function doc of `mapper` function for
`eval_type == PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE` for more details on
the input parameters of lambda function.
Along with the returned iterator, the lambda instance will also produce the return_type as
converted to the arrow schema.
"""
def wrapped(key_series, value_series_gen, state):
"""
Provide an adapter of the user function performing below:
- Extract the first value of all columns in key series and produce as a tuple.
- If the state has timed out, call the user function with empty pandas DataFrame.
- If not, construct a new generator which converts each element of value series to
pandas DataFrame (lazy evaluation), and call the user function with the generator
- Verify each element of returned iterator to check the schema of pandas DataFrame.
"""
import pandas as pd
key = tuple(s[0] for s in key_series)
if state.hasTimedOut:
# Timeout processing pass empty iterator. Here we return an empty DataFrame instead.
values = [
pd.DataFrame(columns=pd.concat(next(value_series_gen), axis=1).columns),
]
else:
values = (pd.concat(x, axis=1) for x in value_series_gen)
result_iter = f(key, values, state)
def verify_element(result):
if not isinstance(result, pd.DataFrame):
raise TypeError(
"The type of element in return iterator of the user-defined function "
"should be pandas.DataFrame, but is {}".format(type(result))
)
# the number of columns of result have to match the return type
# but it is fine for result to have no columns at all if it is empty
if not (
len(result.columns) == len(return_type)
or (len(result.columns) == 0 and result.empty)
):
raise RuntimeError(
"Number of columns of the element (pandas.DataFrame) in return iterator "
"doesn't match specified schema. "
"Expected: {} Actual: {}".format(len(return_type), len(result.columns))
)
return result
if isinstance(result_iter, pd.DataFrame):
raise TypeError(
"Return type of the user-defined function should be "
"iterable of pandas.DataFrame, but is {}".format(type(result_iter))
)
try:
iter(result_iter)
except TypeError:
raise TypeError(
"Return type of the user-defined function should be "
"iterable, but is {}".format(type(result_iter))
)
result_iter_with_validation = (verify_element(x) for x in result_iter)
return (
result_iter_with_validation,
state,
)
return lambda k, v, s: [(wrapped(k, v, s), to_arrow_type(return_type))]
def wrap_grouped_agg_pandas_udf(f, return_type):
arrow_return_type = to_arrow_type(return_type)
def wrapped(*series):
import pandas as pd
result = f(*series)
return pd.Series([result])
return lambda *a: (wrapped(*a), arrow_return_type)
def wrap_window_agg_pandas_udf(f, return_type, runner_conf, udf_index):
window_bound_types_str = runner_conf.get("pandas_window_bound_types")
window_bound_type = [t.strip().lower() for t in window_bound_types_str.split(",")][udf_index]
if window_bound_type == "bounded":
return wrap_bounded_window_agg_pandas_udf(f, return_type)
elif window_bound_type == "unbounded":
return wrap_unbounded_window_agg_pandas_udf(f, return_type)
else:
raise RuntimeError("Invalid window bound type: {} ".format(window_bound_type))
def wrap_unbounded_window_agg_pandas_udf(f, return_type):
# This is similar to grouped_agg_pandas_udf, the only difference
# is that window_agg_pandas_udf needs to repeat the return value
# to match window length, where grouped_agg_pandas_udf just returns
# the scalar value.
arrow_return_type = to_arrow_type(return_type)
def wrapped(*series):
import pandas as pd
result = f(*series)
return pd.Series([result]).repeat(len(series[0]))
return lambda *a: (wrapped(*a), arrow_return_type)
def wrap_bounded_window_agg_pandas_udf(f, return_type):
arrow_return_type = to_arrow_type(return_type)
def wrapped(begin_index, end_index, *series):
import pandas as pd
result = []
# Index operation is faster on np.ndarray,
# So we turn the index series into np array
# here for performance
begin_array = begin_index.values
end_array = end_index.values
for i in range(len(begin_array)):
# Note: Create a slice from a series for each window is
# actually pretty expensive. However, there
# is no easy way to reduce cost here.
# Note: s.iloc[i : j] is about 30% faster than s[i: j], with
# the caveat that the created slices shares the same
# memory with s. Therefore, user are not allowed to
# change the value of input series inside the window
# function. It is rare that user needs to modify the
# input series in the window function, and therefore,
# it is be a reasonable restriction.
# Note: Calling reset_index on the slices will increase the cost
# of creating slices by about 100%. Therefore, for performance
# reasons we don't do it here.
series_slices = [s.iloc[begin_array[i] : end_array[i]] for s in series]
result.append(f(*series_slices))
return pd.Series(result)
return lambda *a: (wrapped(*a), arrow_return_type)
def read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index):
num_arg = read_int(infile)
arg_offsets = [read_int(infile) for i in range(num_arg)]
chained_func = None
for i in range(read_int(infile)):
f, return_type = read_command(pickleSer, infile)
if chained_func is None:
chained_func = f
else:
chained_func = chain(chained_func, f)
if eval_type == PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF:
func = chained_func
else:
# make sure StopIteration's raised in the user code are not ignored
# when they are processed in a for loop, raise them as RuntimeError's instead
func = fail_on_stopiteration(chained_func)
# the last returnType will be the return type of UDF
if eval_type == PythonEvalType.SQL_SCALAR_PANDAS_UDF:
return arg_offsets, wrap_scalar_pandas_udf(func, return_type)
elif eval_type == PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF:
return arg_offsets, wrap_batch_iter_udf(func, return_type)
elif eval_type == PythonEvalType.SQL_MAP_PANDAS_ITER_UDF:
return arg_offsets, wrap_batch_iter_udf(func, return_type)
elif eval_type == PythonEvalType.SQL_MAP_ARROW_ITER_UDF:
return arg_offsets, wrap_batch_iter_udf(func, return_type)
elif eval_type == PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF:
argspec = getfullargspec(chained_func) # signature was lost when wrapping it
return arg_offsets, wrap_grouped_map_pandas_udf(func, return_type, argspec, runner_conf)
elif eval_type == PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE:
return arg_offsets, wrap_grouped_map_pandas_udf_with_state(func, return_type)
elif eval_type == PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF:
argspec = getfullargspec(chained_func) # signature was lost when wrapping it
return arg_offsets, wrap_cogrouped_map_pandas_udf(func, return_type, argspec, runner_conf)
elif eval_type == PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF:
return arg_offsets, wrap_grouped_agg_pandas_udf(func, return_type)
elif eval_type == PythonEvalType.SQL_WINDOW_AGG_PANDAS_UDF:
return arg_offsets, wrap_window_agg_pandas_udf(func, return_type, runner_conf, udf_index)
elif eval_type == PythonEvalType.SQL_BATCHED_UDF:
return arg_offsets, wrap_udf(func, return_type)
else:
raise ValueError("Unknown eval type: {}".format(eval_type))
# Used by SQL_GROUPED_MAP_PANDAS_UDF and SQL_SCALAR_PANDAS_UDF when returning StructType
def assign_cols_by_name(runner_conf):
return (
runner_conf.get(
"spark.sql.legacy.execution.pandas.groupedMap.assignColumnsByName", "true"
).lower()
== "true"
)
def read_udfs(pickleSer, infile, eval_type):
runner_conf = {}
if eval_type in (
PythonEvalType.SQL_SCALAR_PANDAS_UDF,
PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF,
PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF,
PythonEvalType.SQL_MAP_PANDAS_ITER_UDF,
PythonEvalType.SQL_MAP_ARROW_ITER_UDF,
PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF,
PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF,
PythonEvalType.SQL_WINDOW_AGG_PANDAS_UDF,
PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE,
):
# Load conf used for pandas_udf evaluation
num_conf = read_int(infile)
for i in range(num_conf):
k = utf8_deserializer.loads(infile)
v = utf8_deserializer.loads(infile)
runner_conf[k] = v
state_object_schema = None
if eval_type == PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE:
state_object_schema = StructType.fromJson(json.loads(utf8_deserializer.loads(infile)))
# NOTE: if timezone is set here, that implies respectSessionTimeZone is True
timezone = runner_conf.get("spark.sql.session.timeZone", None)
safecheck = (
runner_conf.get("spark.sql.execution.pandas.convertToArrowArraySafely", "false").lower()
== "true"
)
if eval_type == PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF:
ser = CogroupUDFSerializer(timezone, safecheck, assign_cols_by_name(runner_conf))
elif eval_type == PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE:
arrow_max_records_per_batch = runner_conf.get(
"spark.sql.execution.arrow.maxRecordsPerBatch", 10000
)
arrow_max_records_per_batch = int(arrow_max_records_per_batch)
ser = ApplyInPandasWithStateSerializer(
timezone,
safecheck,
assign_cols_by_name(runner_conf),
state_object_schema,
arrow_max_records_per_batch,
)
elif eval_type == PythonEvalType.SQL_MAP_ARROW_ITER_UDF:
ser = ArrowStreamUDFSerializer()
else:
# Scalar Pandas UDF handles struct type arguments as pandas DataFrames instead of
# pandas Series. See SPARK-27240.
df_for_struct = (
eval_type == PythonEvalType.SQL_SCALAR_PANDAS_UDF
or eval_type == PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF
or eval_type == PythonEvalType.SQL_MAP_PANDAS_ITER_UDF
)
ser = ArrowStreamPandasUDFSerializer(
timezone, safecheck, assign_cols_by_name(runner_conf), df_for_struct
)
else:
ser = BatchedSerializer(CPickleSerializer(), 100)
num_udfs = read_int(infile)
is_scalar_iter = eval_type == PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF
is_map_pandas_iter = eval_type == PythonEvalType.SQL_MAP_PANDAS_ITER_UDF
is_map_arrow_iter = eval_type == PythonEvalType.SQL_MAP_ARROW_ITER_UDF
if is_scalar_iter or is_map_pandas_iter or is_map_arrow_iter:
if is_scalar_iter:
assert num_udfs == 1, "One SCALAR_ITER UDF expected here."
if is_map_pandas_iter:
assert num_udfs == 1, "One MAP_PANDAS_ITER UDF expected here."
if is_map_arrow_iter:
assert num_udfs == 1, "One MAP_ARROW_ITER UDF expected here."
arg_offsets, udf = read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index=0)
def func(_, iterator):
num_input_rows = 0
def map_batch(batch):
nonlocal num_input_rows
udf_args = [batch[offset] for offset in arg_offsets]
num_input_rows += len(udf_args[0])
if len(udf_args) == 1:
return udf_args[0]
else:
return tuple(udf_args)
iterator = map(map_batch, iterator)
result_iter = udf(iterator)
num_output_rows = 0
for result_batch, result_type in result_iter:
num_output_rows += len(result_batch)
# This assert is for Scalar Iterator UDF to fail fast.
# The length of the entire input can only be explicitly known
# by consuming the input iterator in user side. Therefore,
# it's very unlikely the output length is higher than
# input length.
assert (
is_map_pandas_iter or is_map_arrow_iter or num_output_rows <= num_input_rows
), "Pandas SCALAR_ITER UDF outputted more rows than input rows."
yield (result_batch, result_type)
if is_scalar_iter:
try:
next(iterator)
except StopIteration:
pass
else:
raise RuntimeError("pandas iterator UDF should exhaust the input " "iterator.")
if num_output_rows != num_input_rows:
raise RuntimeError(
"The length of output in Scalar iterator pandas UDF should be "
"the same with the input's; however, the length of output was %d and the "
"length of input was %d." % (num_output_rows, num_input_rows)
)
# profiling is not supported for UDF
return func, None, ser, ser
def extract_key_value_indexes(grouped_arg_offsets):
"""
Helper function to extract the key and value indexes from arg_offsets for the grouped and
cogrouped pandas udfs. See BasePandasGroupExec.resolveArgOffsets for equivalent scala code.
Parameters
----------
grouped_arg_offsets: list
List containing the key and value indexes of columns of the
DataFrames to be passed to the udf. It consists of n repeating groups where n is the
number of DataFrames. Each group has the following format:
group[0]: length of group
group[1]: length of key indexes
group[2.. group[1] +2]: key attributes
group[group[1] +3 group[0]]: value attributes
"""
parsed = []
idx = 0
while idx < len(grouped_arg_offsets):
offsets_len = grouped_arg_offsets[idx]
idx += 1
offsets = grouped_arg_offsets[idx : idx + offsets_len]
split_index = offsets[0] + 1
offset_keys = offsets[1:split_index]
offset_values = offsets[split_index:]
parsed.append([offset_keys, offset_values])
idx += offsets_len
return parsed
if eval_type == PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF:
# We assume there is only one UDF here because grouped map doesn't
# support combining multiple UDFs.
assert num_udfs == 1
# See FlatMapGroupsInPandasExec for how arg_offsets are used to
# distinguish between grouping attributes and data attributes
arg_offsets, f = read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index=0)
parsed_offsets = extract_key_value_indexes(arg_offsets)
# Create function like this:
# mapper a: f([a[0]], [a[0], a[1]])
def mapper(a):
keys = [a[o] for o in parsed_offsets[0][0]]
vals = [a[o] for o in parsed_offsets[0][1]]
return f(keys, vals)
elif eval_type == PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE:
# We assume there is only one UDF here because grouped map doesn't
# support combining multiple UDFs.
assert num_udfs == 1
# See FlatMapGroupsInPandas(WithState)Exec for how arg_offsets are used to
# distinguish between grouping attributes and data attributes
arg_offsets, f = read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index=0)
parsed_offsets = extract_key_value_indexes(arg_offsets)
def mapper(a):
"""
The function receives (iterator of data, state) and performs extraction of key and
value from the data, with retaining lazy evaluation.
See `load_stream` in `ApplyInPandasWithStateSerializer` for more details on the input
and see `wrap_grouped_map_pandas_udf_with_state` for more details on how output will
be used.
"""
from itertools import tee
state = a[1]
data_gen = (x[0] for x in a[0])
# We know there should be at least one item in the iterator/generator.
# We want to peek the first element to construct the key, hence applying
# tee to construct the key while we retain another iterator/generator
# for values.
keys_gen, values_gen = tee(data_gen)
keys_elem = next(keys_gen)
keys = [keys_elem[o] for o in parsed_offsets[0][0]]
# This must be generator comprehension - do not materialize.
vals = ([x[o] for o in parsed_offsets[0][1]] for x in values_gen)
return f(keys, vals, state)
elif eval_type == PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF:
# We assume there is only one UDF here because cogrouped map doesn't
# support combining multiple UDFs.
assert num_udfs == 1
arg_offsets, f = read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index=0)
parsed_offsets = extract_key_value_indexes(arg_offsets)
def mapper(a):
df1_keys = [a[0][o] for o in parsed_offsets[0][0]]
df1_vals = [a[0][o] for o in parsed_offsets[0][1]]
df2_keys = [a[1][o] for o in parsed_offsets[1][0]]
df2_vals = [a[1][o] for o in parsed_offsets[1][1]]
return f(df1_keys, df1_vals, df2_keys, df2_vals)
else:
udfs = []
for i in range(num_udfs):
udfs.append(read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index=i))
def mapper(a):
result = tuple(f(*[a[o] for o in arg_offsets]) for (arg_offsets, f) in udfs)
# In the special case of a single UDF this will return a single result rather
# than a tuple of results; this is the format that the JVM side expects.
if len(result) == 1:
return result[0]
else:
return result
def func(_, it):
return map(mapper, it)
# profiling is not supported for UDF
return func, None, ser, ser
def main(infile, outfile):
faulthandler_log_path = os.environ.get("PYTHON_FAULTHANDLER_DIR", None)
try:
if faulthandler_log_path:
faulthandler_log_path = os.path.join(faulthandler_log_path, str(os.getpid()))
faulthandler_log_file = open(faulthandler_log_path, "w")
faulthandler.enable(file=faulthandler_log_file)
boot_time = time.time()
split_index = read_int(infile)
if split_index == -1: # for unit tests
sys.exit(-1)
version = utf8_deserializer.loads(infile)
if version != "%d.%d" % sys.version_info[:2]:
raise RuntimeError(
(
"Python in worker has different version %s than that in "
+ "driver %s, PySpark cannot run with different minor versions. "
+ "Please check environment variables PYSPARK_PYTHON and "
+ "PYSPARK_DRIVER_PYTHON are correctly set."
)
% ("%d.%d" % sys.version_info[:2], version)
)
# read inputs only for a barrier task
isBarrier = read_bool(infile)
boundPort = read_int(infile)
secret = UTF8Deserializer().loads(infile)
# set up memory limits
memory_limit_mb = int(os.environ.get("PYSPARK_EXECUTOR_MEMORY_MB", "-1"))
if memory_limit_mb > 0 and has_resource_module:
total_memory = resource.RLIMIT_AS
try:
(soft_limit, hard_limit) = resource.getrlimit(total_memory)
msg = "Current mem limits: {0} of max {1}\n".format(soft_limit, hard_limit)
print(msg, file=sys.stderr)
# convert to bytes
new_limit = memory_limit_mb * 1024 * 1024
if soft_limit == resource.RLIM_INFINITY or new_limit < soft_limit:
msg = "Setting mem limits to {0} of max {1}\n".format(new_limit, new_limit)
print(msg, file=sys.stderr)
resource.setrlimit(total_memory, (new_limit, new_limit))
except (resource.error, OSError, ValueError) as e:
# not all systems support resource limits, so warn instead of failing
lineno = (
getframeinfo(currentframe()).lineno + 1 if currentframe() is not None else 0
)
if "__file__" in globals():
print(
warnings.formatwarning(
"Failed to set memory limit: {0}".format(e),
ResourceWarning,
__file__,
lineno,
),
file=sys.stderr,
)
# initialize global state
taskContext = None
if isBarrier:
taskContext = BarrierTaskContext._getOrCreate()
BarrierTaskContext._initialize(boundPort, secret)
# Set the task context instance here, so we can get it by TaskContext.get for
# both TaskContext and BarrierTaskContext
TaskContext._setTaskContext(taskContext)
else:
taskContext = TaskContext._getOrCreate()
# read inputs for TaskContext info
taskContext._stageId = read_int(infile)
taskContext._partitionId = read_int(infile)
taskContext._attemptNumber = read_int(infile)
taskContext._taskAttemptId = read_long(infile)
taskContext._cpus = read_int(infile)
taskContext._resources = {}
for r in range(read_int(infile)):
key = utf8_deserializer.loads(infile)
name = utf8_deserializer.loads(infile)
addresses = []
taskContext._resources = {}
for a in range(read_int(infile)):
addresses.append(utf8_deserializer.loads(infile))
taskContext._resources[key] = ResourceInformation(name, addresses)
taskContext._localProperties = dict()
for i in range(read_int(infile)):
k = utf8_deserializer.loads(infile)
v = utf8_deserializer.loads(infile)
taskContext._localProperties[k] = v
shuffle.MemoryBytesSpilled = 0
shuffle.DiskBytesSpilled = 0
_accumulatorRegistry.clear()
# fetch name of workdir
spark_files_dir = utf8_deserializer.loads(infile)
SparkFiles._root_directory = spark_files_dir
SparkFiles._is_running_on_worker = True
# fetch names of includes (*.zip and *.egg files) and construct PYTHONPATH
add_path(spark_files_dir) # *.py files that were added will be copied here
num_python_includes = read_int(infile)
for _ in range(num_python_includes):
filename = utf8_deserializer.loads(infile)
add_path(os.path.join(spark_files_dir, filename))
importlib.invalidate_caches()
# fetch names and values of broadcast variables
needs_broadcast_decryption_server = read_bool(infile)
num_broadcast_variables = read_int(infile)
if needs_broadcast_decryption_server:
# read the decrypted data from a server in the jvm
port = read_int(infile)
auth_secret = utf8_deserializer.loads(infile)
(broadcast_sock_file, _) = local_connect_and_auth(port, auth_secret)
for _ in range(num_broadcast_variables):
bid = read_long(infile)
if bid >= 0:
if needs_broadcast_decryption_server:
read_bid = read_long(broadcast_sock_file)
assert read_bid == bid
_broadcastRegistry[bid] = Broadcast(sock_file=broadcast_sock_file)
else:
path = utf8_deserializer.loads(infile)
_broadcastRegistry[bid] = Broadcast(path=path)
else:
bid = -bid - 1
_broadcastRegistry.pop(bid)
if needs_broadcast_decryption_server:
broadcast_sock_file.write(b"1")
broadcast_sock_file.close()
_accumulatorRegistry.clear()
eval_type = read_int(infile)
if eval_type == PythonEvalType.NON_UDF:
func, profiler, deserializer, serializer = read_command(pickleSer, infile)
else:
func, profiler, deserializer, serializer = read_udfs(pickleSer, infile, eval_type)
init_time = time.time()
def process():
iterator = deserializer.load_stream(infile)
out_iter = func(split_index, iterator)
try:
serializer.dump_stream(out_iter, outfile)
finally:
if hasattr(out_iter, "close"):
out_iter.close()
if profiler:
profiler.profile(process)
else:
process()
# Reset task context to None. This is a guard code to avoid residual context when worker
# reuse.
TaskContext._setTaskContext(None)
BarrierTaskContext._setTaskContext(None)
except BaseException as e:
try:
exc_info = None
if os.environ.get("SPARK_SIMPLIFIED_TRACEBACK", False):
tb = try_simplify_traceback(sys.exc_info()[-1])
if tb is not None:
e.__cause__ = None
exc_info = "".join(traceback.format_exception(type(e), e, tb))
if exc_info is None:
exc_info = traceback.format_exc()
write_int(SpecialLengths.PYTHON_EXCEPTION_THROWN, outfile)
write_with_length(exc_info.encode("utf-8"), outfile)
except IOError:
# JVM close the socket
pass
except BaseException:
# Write the error to stderr if it happened while serializing
print("PySpark worker failed with exception:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
sys.exit(-1)
finally:
if faulthandler_log_path:
faulthandler.disable()
faulthandler_log_file.close()
os.remove(faulthandler_log_path)
finish_time = time.time()
report_times(outfile, boot_time, init_time, finish_time)
write_long(shuffle.MemoryBytesSpilled, outfile)
write_long(shuffle.DiskBytesSpilled, outfile)
# Mark the beginning of the accumulators section of the output
write_int(SpecialLengths.END_OF_DATA_SECTION, outfile)
write_int(len(_accumulatorRegistry), outfile)
for (aid, accum) in _accumulatorRegistry.items():
pickleSer._write_with_length((aid, accum._value), outfile)
# check end of stream
if read_int(infile) == SpecialLengths.END_OF_STREAM:
write_int(SpecialLengths.END_OF_STREAM, outfile)
else:
# write a different value to tell JVM to not reuse this worker
write_int(SpecialLengths.END_OF_DATA_SECTION, outfile)
sys.exit(-1)
if __name__ == "__main__":
# Read information about how to connect back to the JVM from the environment.
java_port = int(os.environ["PYTHON_WORKER_FACTORY_PORT"])
auth_secret = os.environ["PYTHON_WORKER_FACTORY_SECRET"]
(sock_file, _) = local_connect_and_auth(java_port, auth_secret)
# TODO: Remove the following two lines and use `Process.pid()` when we drop JDK 8.
write_int(os.getpid(), sock_file)
sock_file.flush()
main(sock_file, sock_file)