@@ -245,7 +245,7 @@ class GenELMClassifier(BaseELM, ClassifierMixin):
245245    `classes_` : numpy array of shape [n_classes] 
246246        Array of class labels 
247247
248-     `elm_regressor_ ` : ELMRegressor instance 
248+     `genelm_regressor_ ` : ELMRegressor instance 
249249        Performs actual fit of binarized values 
250250
251251    See Also 
@@ -344,8 +344,8 @@ class ELMRegressor(BaseEstimator, RegressorMixin):
344344    [1][2] 
345345
346346    ELMRegressor is a wrapper for an GenELMRegressor that uses a 
347-     RandomLayer and exposes  the RandomLayer's  parameters in its  
348-     own constructor . 
347+     RandomLayer and passes  the __init__  parameters through  
348+     to the hidden layer generated by the fit() method . 
349349
350350    Parameters 
351351    ---------- 
@@ -418,9 +418,11 @@ def __init__(self, n_hidden=20, alpha=0.5, rbf_width=1.0,
418418        self .rbf_width  =  rbf_width 
419419        self .regressor  =  regressor 
420420
421-         self ._genelm_regressor_  =  None 
421+         self ._genelm_regressor  =  None 
422422
423423    def  _create_random_layer (self ):
424+         """Pass init params to RandomLayer""" 
425+ 
424426        return  RandomLayer (n_hidden = self .n_hidden ,
425427                           alpha = self .alpha , random_state = self .random_state ,
426428                           activation_func = self .activation_func ,
@@ -449,9 +451,9 @@ def fit(self, X, y):
449451            Returns an instance of self. 
450452        """ 
451453        rhl  =  self ._create_random_layer ()
452-         self .genelm_regressor_  =  GenELMRegressor (hidden_layer = rhl ,
454+         self ._genelm_regressor  =  GenELMRegressor (hidden_layer = rhl ,
453455                                                 regressor = self .regressor )
454-         self .genelm_regressor_ .fit (X , y )
456+         self ._genelm_regressor .fit (X , y )
455457        return  self 
456458
457459    def  predict (self , X ):
@@ -467,10 +469,10 @@ def predict(self, X):
467469        C : numpy array of shape [n_samples, n_outputs] 
468470            Predicted values. 
469471        """ 
470-         if  (self .genelm_regressor_  is  None ):
472+         if  (self ._genelm_regressor  is  None ):
471473            raise  ValueError ("SimpleELMRegressor not fitted" )
472474
473-         return  self .genelm_regressor_ .predict (X )
475+         return  self ._genelm_regressor .predict (X )
474476
475477
476478class  ELMClassifier (ELMRegressor ):
@@ -486,8 +488,8 @@ class ELMClassifier(ELMRegressor):
486488    data, then uses the superclass to compute the decision function that 
487489    is then unbinarized to yield the prediction. 
488490
489-     The RandomLayer used for  the input transform are exposed in the  
490-     ELMClassifier constructor. 
491+     The params for the  RandomLayer used in  the input transform are 
492+     exposed in the  ELMClassifier constructor. 
491493
492494    Parameters 
493495    ---------- 
@@ -609,5 +611,8 @@ def predict(self, X):
609611        return  class_predictions 
610612
611613    def  score (self , X , y ):
614+         """Force use of accuracy score since we don't inherit 
615+            from ClassifierMixin""" 
616+ 
612617        from  sklearn .metrics  import  accuracy_score 
613618        return  accuracy_score (y , self .predict (X ))
0 commit comments