Skip to content

Commit 8e9ced2

Browse files
DOC Fix doc of defaults in sklearn.utils.sparsefuncs.py (scikit-learn#18025)
Co-authored-by: Guillaume Lemaitre <[email protected]>
1 parent e55795b commit 8e9ced2

File tree

1 file changed

+49
-42
lines changed

1 file changed

+49
-42
lines changed

sklearn/utils/sparsefuncs.py

Lines changed: 49 additions & 42 deletions
Original file line numberDiff line numberDiff line change
@@ -35,10 +35,11 @@ def inplace_csr_column_scale(X, scale):
3535
3636
Parameters
3737
----------
38-
X : CSR matrix with shape (n_samples, n_features)
38+
X : sparse matrix of shape (n_samples, n_features)
3939
Matrix to normalize using the variance of the features.
40+
It should be of CSR format.
4041
41-
scale : float array with shape (n_features,)
42+
scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
4243
Array of precomputed feature-wise values to use for scaling.
4344
"""
4445
assert scale.shape[0] == X.shape[1]
@@ -53,25 +54,25 @@ def inplace_csr_row_scale(X, scale):
5354
5455
Parameters
5556
----------
56-
X : CSR sparse matrix, shape (n_samples, n_features)
57-
Matrix to be scaled.
57+
X : sparse matrix of shape (n_samples, n_features)
58+
Matrix to be scaled. It should be of CSR format.
5859
59-
scale : float array with shape (n_samples,)
60+
scale : ndarray of float of shape (n_samples,)
6061
Array of precomputed sample-wise values to use for scaling.
6162
"""
6263
assert scale.shape[0] == X.shape[0]
6364
X.data *= np.repeat(scale, np.diff(X.indptr))
6465

6566

6667
def mean_variance_axis(X, axis, weights=None, return_sum_weights=False):
67-
"""Compute mean and variance along an axix on a CSR or CSC matrix
68+
"""Compute mean and variance along an axis on a CSR or CSC matrix.
6869
6970
Parameters
7071
----------
71-
X : CSR or CSC sparse matrix, shape (n_samples, n_features)
72-
Input data.
72+
X : sparse matrix of shape (n_samples, n_features)
73+
Input data. It can be of CSR or CSC format.
7374
74-
axis : int (either 0 or 1)
75+
axis : {0, 1}
7576
Axis along which the axis should be computed.
7677
7778
weights : ndarray of shape (n_samples,) or (n_features,), default=None
@@ -91,10 +92,10 @@ def mean_variance_axis(X, axis, weights=None, return_sum_weights=False):
9192
-------
9293
9394
means : ndarray of shape (n_features,), dtype=floating
94-
Feature-wise means
95+
Feature-wise means.
9596
9697
variances : ndarray of shape (n_features,), dtype=floating
97-
Feature-wise variances
98+
Feature-wise variances.
9899
99100
sum_weights : ndarray of shape (n_features,), dtype=floating
100101
Returned if `return_sum_weights` is `True`.
@@ -122,7 +123,7 @@ def mean_variance_axis(X, axis, weights=None, return_sum_weights=False):
122123
@_deprecate_positional_args
123124
def incr_mean_variance_axis(X, *, axis, last_mean, last_var, last_n,
124125
weights=None):
125-
"""Compute incremental mean and variance along an axix on a CSR or
126+
"""Compute incremental mean and variance along an axis on a CSR or
126127
CSC matrix.
127128
128129
last_mean, last_var are the statistics computed at the last step by this
@@ -132,10 +133,10 @@ def incr_mean_variance_axis(X, *, axis, last_mean, last_var, last_n,
132133
133134
Parameters
134135
----------
135-
X : CSR or CSC sparse matrix, shape (n_samples, n_features)
136+
X : CSR or CSC sparse matrix of shape (n_samples, n_features)
136137
Input data.
137138
138-
axis : int (either 0 or 1)
139+
axis : {0, 1}
139140
Axis along which the axis should be computed.
140141
141142
last_mean : ndarray of shape (n_features,) or (n_samples,), dtype=floating
@@ -226,10 +227,11 @@ def inplace_column_scale(X, scale):
226227
227228
Parameters
228229
----------
229-
X : CSC or CSR matrix with shape (n_samples, n_features)
230-
Matrix to normalize using the variance of the features.
230+
X : sparse matrix of shape (n_samples, n_features)
231+
Matrix to normalize using the variance of the features. It should be
232+
of CSC or CSR format.
231233
232-
scale : float array with shape (n_features,)
234+
scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
233235
Array of precomputed feature-wise values to use for scaling.
234236
"""
235237
if isinstance(X, sp.csc_matrix):
@@ -248,10 +250,10 @@ def inplace_row_scale(X, scale):
248250
249251
Parameters
250252
----------
251-
X : CSR or CSC sparse matrix, shape (n_samples, n_features)
252-
Matrix to be scaled.
253+
X : sparse matrix of shape (n_samples, n_features)
254+
Matrix to be scaled. It should be of CSR or CSC format.
253255
254-
scale : float array with shape (n_features,)
256+
scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
255257
Array of precomputed sample-wise values to use for scaling.
256258
"""
257259
if isinstance(X, sp.csc_matrix):
@@ -268,8 +270,9 @@ def inplace_swap_row_csc(X, m, n):
268270
269271
Parameters
270272
----------
271-
X : scipy.sparse.csc_matrix, shape=(n_samples, n_features)
272-
Matrix whose two rows are to be swapped.
273+
X : sparse matrix of shape (n_samples, n_features)
274+
Matrix whose two rows are to be swapped. It should be of
275+
CSC format.
273276
274277
m : int
275278
Index of the row of X to be swapped.
@@ -297,8 +300,9 @@ def inplace_swap_row_csr(X, m, n):
297300
298301
Parameters
299302
----------
300-
X : scipy.sparse.csr_matrix, shape=(n_samples, n_features)
301-
Matrix whose two rows are to be swapped.
303+
X : sparse matrix of shape (n_samples, n_features)
304+
Matrix whose two rows are to be swapped. It should be of
305+
CSR format.
302306
303307
m : int
304308
Index of the row of X to be swapped.
@@ -352,8 +356,9 @@ def inplace_swap_row(X, m, n):
352356
353357
Parameters
354358
----------
355-
X : CSR or CSC sparse matrix, shape=(n_samples, n_features)
356-
Matrix whose two rows are to be swapped.
359+
X : sparse matrix of shape (n_samples, n_features)
360+
Matrix whose two rows are to be swapped. It should be of CSR or
361+
CSC format.
357362
358363
m : int
359364
Index of the row of X to be swapped.
@@ -375,8 +380,9 @@ def inplace_swap_column(X, m, n):
375380
376381
Parameters
377382
----------
378-
X : CSR or CSC sparse matrix, shape=(n_samples, n_features)
379-
Matrix whose two columns are to be swapped.
383+
X : sparse matrix of shape (n_samples, n_features)
384+
Matrix whose two columns are to be swapped. It should be of
385+
CSR or CSC format.
380386
381387
m : int
382388
Index of the column of X to be swapped.
@@ -465,10 +471,10 @@ def min_max_axis(X, axis, ignore_nan=False):
465471
466472
Parameters
467473
----------
468-
X : CSR or CSC sparse matrix, shape (n_samples, n_features)
469-
Input data.
474+
X : sparse matrix of shape (n_samples, n_features)
475+
Input data. It should be of CSR or CSC format.
470476
471-
axis : int (either 0 or 1)
477+
axis : {0, 1}
472478
Axis along which the axis should be computed.
473479
474480
ignore_nan : bool, default=False
@@ -479,11 +485,11 @@ def min_max_axis(X, axis, ignore_nan=False):
479485
Returns
480486
-------
481487
482-
mins : float array with shape (n_features,)
483-
Feature-wise minima
488+
mins : ndarray of shape (n_features,), dtype={np.float32, np.float64}
489+
Feature-wise minima.
484490
485-
maxs : float array with shape (n_features,)
486-
Feature-wise maxima
491+
maxs : ndarray of shape (n_features,), dtype={np.float32, np.float64}
492+
Feature-wise maxima.
487493
"""
488494
if isinstance(X, sp.csr_matrix) or isinstance(X, sp.csc_matrix):
489495
if ignore_nan:
@@ -501,10 +507,10 @@ def count_nonzero(X, axis=None, sample_weight=None):
501507
502508
Parameters
503509
----------
504-
X : CSR sparse matrix of shape (n_samples, n_labels)
505-
Input data.
510+
X : sparse matrix of shape (n_samples, n_labels)
511+
Input data. It should be of CSR format.
506512
507-
axis : None, 0 or 1
513+
axis : {0, 1}, default=None
508514
The axis on which the data is aggregated.
509515
510516
sample_weight : array-like of shape (n_samples,), default=None
@@ -546,7 +552,8 @@ def count_nonzero(X, axis=None, sample_weight=None):
546552
def _get_median(data, n_zeros):
547553
"""Compute the median of data with n_zeros additional zeros.
548554
549-
This function is used to support sparse matrices; it modifies data in-place
555+
This function is used to support sparse matrices; it modifies data
556+
in-place.
550557
"""
551558
n_elems = len(data) + n_zeros
552559
if not n_elems:
@@ -577,12 +584,12 @@ def csc_median_axis_0(X):
577584
578585
Parameters
579586
----------
580-
X : CSC sparse matrix, shape (n_samples, n_features)
581-
Input data.
587+
X : sparse matrix of shape (n_samples, n_features)
588+
Input data. It should be of CSC format.
582589
583590
Returns
584591
-------
585-
median : ndarray, shape (n_features,)
592+
median : ndarray of shape (n_features,)
586593
Median.
587594
588595
"""

0 commit comments

Comments
 (0)