Skip to content

Commit bdacaba

Browse files
committed
Kernelized ridge regression -> Kernel ridge regression
1 parent edc9bbb commit bdacaba

File tree

4 files changed

+13
-13
lines changed

4 files changed

+13
-13
lines changed

doc/modules/classes.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -580,7 +580,7 @@ From text
580580

581581
.. _kernel_ridge_ref:
582582

583-
:mod:`sklearn.kernel_ridge` Kernelized Ridge Regression
583+
:mod:`sklearn.kernel_ridge` Kernel Ridge Regression
584584
========================================================
585585

586586
.. automodule:: sklearn.kernel_ridge

doc/modules/kernel_ridge.rst

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,13 @@
11
.. _kernel_ridge:
22

33
===========================
4-
Kernelized ridge regression
4+
Kernel ridge regression
55
===========================
66

77
.. currentmodule:: sklearn.kernel_ridge
88

9-
Kernelized ridge regression (KRR) [M2012]_ combines :ref:`ridge_regression`
10-
(linear least squares plus l2-norm regularization) with the kernel trick. It
9+
Kernel ridge regression (KRR) [M2012]_ combines :ref:`ridge_regression`
10+
(linear least squares with l2-norm regularization) with the kernel trick. It
1111
thus learns a linear function in the space induced by the respective kernel and
1212
the data. For non-linear kernels, this corresponds to a non-linear
1313
function in the original space.
@@ -16,9 +16,9 @@ The form of the model learned by :class:`KernelRidge` is identical to support
1616
vector regression (:class:`SVR`). However, different loss functions are used:
1717
KRR uses squared error loss while support vector regression uses
1818
:math:`\epsilon`-insensitive loss, both combined with l2 regularization. In
19-
contrast to :class:`SVR`, fitting :class:`KernelRidge` can be done in
20-
closed-form and is typically faster for medium-sized datasets. On the other
21-
hand, the learned model is non-sparse and thus slower than SVR, which learns
19+
contrast to :class:`SVR`, fitting :class:`KernelRidge` can be done in
20+
closed-form and is typically faster for medium-sized datasets. On the other
21+
hand, the learned model is non-sparse and thus slower than SVR, which learns
2222
a sparse model for :math:`\epsilon > 0`, at prediction-time.
2323

2424
The following figure compares :class:`KernelRidge` and :class:`SVR` on

doc/supervised_learning.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,8 @@ Supervised learning
88
.. toctree::
99

1010
modules/linear_model
11+
modules/lda_qda.rst
12+
modules/kernel_ridge.rst
1113
modules/svm
1214
modules/sgd
1315
modules/neighbors
@@ -19,6 +21,4 @@ Supervised learning
1921
modules/multiclass
2022
modules/feature_selection.rst
2123
modules/label_propagation.rst
22-
modules/lda_qda.rst
2324
modules/isotonic.rst
24-
modules/kernel_ridge.rst

sklearn/kernel_ridge.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -14,10 +14,10 @@
1414

1515

1616
class KernelRidge(BaseEstimator, RegressorMixin):
17-
"""Kernelized ridge regression.
17+
"""Kernel ridge regression.
1818
19-
Kernelized ridge regression (KRR) combines ridge regression (linear least
20-
squares plus l2-norm regularization) with the kernel trick. It thus
19+
Kernel ridge regression (KRR) combines ridge regression (linear least
20+
squares with l2-norm regularization) with the kernel trick. It thus
2121
learns a linear function in the space induced by the respective kernel and
2222
the data. For non-linear kernels, this corresponds to a non-linear
2323
function in the original space.
@@ -82,7 +82,7 @@ class KernelRidge(BaseEstimator, RegressorMixin):
8282
See also
8383
--------
8484
Ridge
85-
Linear, non-kernelized least squares with l2 regularization.
85+
Linear ridge regression.
8686
SVR
8787
Support Vector Regression implemented using libsvm.
8888

0 commit comments

Comments
 (0)