|
20 | 20 | }, |
21 | 21 | { |
22 | 22 | "cell_type": "code", |
23 | | - "execution_count": 1, |
| 23 | + "execution_count": null, |
24 | 24 | "metadata": { |
25 | 25 | "collapsed": false |
26 | 26 | }, |
27 | | - "outputs": [ |
28 | | - { |
29 | | - "name": "stdout", |
30 | | - "output_type": "stream", |
31 | | - "text": [ |
32 | | - "Extracting /tmp/data/train-images-idx3-ubyte.gz\n", |
33 | | - "Extracting /tmp/data/train-labels-idx1-ubyte.gz\n", |
34 | | - "Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n", |
35 | | - "Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n" |
36 | | - ] |
37 | | - } |
38 | | - ], |
| 27 | + "outputs": [], |
39 | 28 | "source": [ |
40 | 29 | "import tensorflow as tf\n", |
41 | 30 | "\n", |
42 | 31 | "# Import MNIST data\n", |
43 | 32 | "from tensorflow.examples.tutorials.mnist import input_data\n", |
44 | | - "mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)" |
| 33 | + "mnist = input_data.read_data_sets(\"MNIST_data/\", one_hot=True)" |
45 | 34 | ] |
46 | 35 | }, |
47 | 36 | { |
|
150 | 139 | "pred = conv_net(x, weights, biases, keep_prob)\n", |
151 | 140 | "\n", |
152 | 141 | "# Define loss and optimizer\n", |
153 | | - "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))\n", |
| 142 | + "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))\n", |
154 | 143 | "optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)\n", |
155 | 144 | "\n", |
156 | 145 | "# Evaluate model\n", |
157 | 146 | "correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))\n", |
158 | 147 | "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))\n", |
159 | 148 | "\n", |
160 | 149 | "# Initializing the variables\n", |
161 | | - "init = tf.initialize_all_variables()" |
| 150 | + "init = tf.global_variables_initializer()" |
162 | 151 | ] |
163 | 152 | }, |
164 | 153 | { |
165 | 154 | "cell_type": "code", |
166 | | - "execution_count": 5, |
| 155 | + "execution_count": null, |
167 | 156 | "metadata": { |
168 | 157 | "collapsed": false |
169 | 158 | }, |
170 | | - "outputs": [ |
171 | | - { |
172 | | - "name": "stdout", |
173 | | - "output_type": "stream", |
174 | | - "text": [ |
175 | | - "Iter 1280, Minibatch Loss= 17231.589844, Training Accuracy= 0.25000\n", |
176 | | - "Iter 2560, Minibatch Loss= 10580.260742, Training Accuracy= 0.54688\n", |
177 | | - "Iter 3840, Minibatch Loss= 7395.362793, Training Accuracy= 0.64062\n", |
178 | | - "Iter 5120, Minibatch Loss= 4864.292480, Training Accuracy= 0.75781\n", |
179 | | - "Iter 6400, Minibatch Loss= 3830.062012, Training Accuracy= 0.80469\n", |
180 | | - "Iter 7680, Minibatch Loss= 6031.701172, Training Accuracy= 0.72656\n", |
181 | | - "Iter 8960, Minibatch Loss= 2549.708740, Training Accuracy= 0.81250\n", |
182 | | - "Iter 10240, Minibatch Loss= 2010.484985, Training Accuracy= 0.84375\n", |
183 | | - "Iter 11520, Minibatch Loss= 1607.380981, Training Accuracy= 0.89062\n", |
184 | | - "Iter 12800, Minibatch Loss= 1983.302856, Training Accuracy= 0.82812\n", |
185 | | - "Iter 14080, Minibatch Loss= 401.215088, Training Accuracy= 0.94531\n", |
186 | | - "Iter 15360, Minibatch Loss= 976.289307, Training Accuracy= 0.95312\n", |
187 | | - "Iter 16640, Minibatch Loss= 1844.699951, Training Accuracy= 0.89844\n", |
188 | | - "Iter 17920, Minibatch Loss= 1009.859863, Training Accuracy= 0.92969\n", |
189 | | - "Iter 19200, Minibatch Loss= 1397.939453, Training Accuracy= 0.88281\n", |
190 | | - "Iter 20480, Minibatch Loss= 540.369995, Training Accuracy= 0.96094\n", |
191 | | - "Iter 21760, Minibatch Loss= 2589.246826, Training Accuracy= 0.87500\n", |
192 | | - "Iter 23040, Minibatch Loss= 404.981293, Training Accuracy= 0.96094\n", |
193 | | - "Iter 24320, Minibatch Loss= 742.155396, Training Accuracy= 0.93750\n", |
194 | | - "Iter 25600, Minibatch Loss= 851.599731, Training Accuracy= 0.93750\n", |
195 | | - "Iter 26880, Minibatch Loss= 1527.609619, Training Accuracy= 0.90625\n", |
196 | | - "Iter 28160, Minibatch Loss= 1209.633301, Training Accuracy= 0.91406\n", |
197 | | - "Iter 29440, Minibatch Loss= 1123.146851, Training Accuracy= 0.93750\n", |
198 | | - "Iter 30720, Minibatch Loss= 950.860596, Training Accuracy= 0.92188\n", |
199 | | - "Iter 32000, Minibatch Loss= 1217.373779, Training Accuracy= 0.92188\n", |
200 | | - "Iter 33280, Minibatch Loss= 859.433105, Training Accuracy= 0.91406\n", |
201 | | - "Iter 34560, Minibatch Loss= 487.426331, Training Accuracy= 0.95312\n", |
202 | | - "Iter 35840, Minibatch Loss= 287.507721, Training Accuracy= 0.96875\n", |
203 | | - "Iter 37120, Minibatch Loss= 786.797485, Training Accuracy= 0.91406\n", |
204 | | - "Iter 38400, Minibatch Loss= 248.981216, Training Accuracy= 0.97656\n", |
205 | | - "Iter 39680, Minibatch Loss= 147.081467, Training Accuracy= 0.97656\n", |
206 | | - "Iter 40960, Minibatch Loss= 1198.459106, Training Accuracy= 0.93750\n", |
207 | | - "Iter 42240, Minibatch Loss= 717.058716, Training Accuracy= 0.92188\n", |
208 | | - "Iter 43520, Minibatch Loss= 351.870453, Training Accuracy= 0.96094\n", |
209 | | - "Iter 44800, Minibatch Loss= 271.505554, Training Accuracy= 0.96875\n", |
210 | | - "Iter 46080, Minibatch Loss= 0.000000, Training Accuracy= 1.00000\n", |
211 | | - "Iter 47360, Minibatch Loss= 806.163818, Training Accuracy= 0.95312\n", |
212 | | - "Iter 48640, Minibatch Loss= 1055.359009, Training Accuracy= 0.91406\n", |
213 | | - "Iter 49920, Minibatch Loss= 459.845520, Training Accuracy= 0.94531\n", |
214 | | - "Iter 51200, Minibatch Loss= 133.995087, Training Accuracy= 0.97656\n", |
215 | | - "Iter 52480, Minibatch Loss= 378.886780, Training Accuracy= 0.96094\n", |
216 | | - "Iter 53760, Minibatch Loss= 122.112671, Training Accuracy= 0.98438\n", |
217 | | - "Iter 55040, Minibatch Loss= 357.410950, Training Accuracy= 0.96875\n", |
218 | | - "Iter 56320, Minibatch Loss= 164.791595, Training Accuracy= 0.98438\n", |
219 | | - "Iter 57600, Minibatch Loss= 740.711060, Training Accuracy= 0.95312\n", |
220 | | - "Iter 58880, Minibatch Loss= 755.948364, Training Accuracy= 0.92969\n", |
221 | | - "Iter 60160, Minibatch Loss= 289.819153, Training Accuracy= 0.94531\n", |
222 | | - "Iter 61440, Minibatch Loss= 162.940323, Training Accuracy= 0.96875\n", |
223 | | - "Iter 62720, Minibatch Loss= 616.192200, Training Accuracy= 0.92969\n", |
224 | | - "Iter 64000, Minibatch Loss= 649.317993, Training Accuracy= 0.92188\n", |
225 | | - "Iter 65280, Minibatch Loss= 1021.529785, Training Accuracy= 0.93750\n", |
226 | | - "Iter 66560, Minibatch Loss= 203.839050, Training Accuracy= 0.96094\n", |
227 | | - "Iter 67840, Minibatch Loss= 469.755249, Training Accuracy= 0.96094\n", |
228 | | - "Iter 69120, Minibatch Loss= 36.496567, Training Accuracy= 0.98438\n", |
229 | | - "Iter 70400, Minibatch Loss= 214.677551, Training Accuracy= 0.95312\n", |
230 | | - "Iter 71680, Minibatch Loss= 115.657990, Training Accuracy= 0.96875\n", |
231 | | - "Iter 72960, Minibatch Loss= 354.555115, Training Accuracy= 0.96875\n", |
232 | | - "Iter 74240, Minibatch Loss= 124.091103, Training Accuracy= 0.97656\n", |
233 | | - "Iter 75520, Minibatch Loss= 614.557251, Training Accuracy= 0.94531\n", |
234 | | - "Iter 76800, Minibatch Loss= 343.182983, Training Accuracy= 0.95312\n", |
235 | | - "Iter 78080, Minibatch Loss= 678.875183, Training Accuracy= 0.94531\n", |
236 | | - "Iter 79360, Minibatch Loss= 313.656494, Training Accuracy= 0.95312\n", |
237 | | - "Iter 80640, Minibatch Loss= 169.024185, Training Accuracy= 0.96094\n", |
238 | | - "Iter 81920, Minibatch Loss= 98.455017, Training Accuracy= 0.96875\n", |
239 | | - "Iter 83200, Minibatch Loss= 359.754517, Training Accuracy= 0.92188\n", |
240 | | - "Iter 84480, Minibatch Loss= 214.993103, Training Accuracy= 0.96875\n", |
241 | | - "Iter 85760, Minibatch Loss= 262.921265, Training Accuracy= 0.97656\n", |
242 | | - "Iter 87040, Minibatch Loss= 558.218445, Training Accuracy= 0.89844\n", |
243 | | - "Iter 88320, Minibatch Loss= 122.281952, Training Accuracy= 0.99219\n", |
244 | | - "Iter 89600, Minibatch Loss= 300.606689, Training Accuracy= 0.93750\n", |
245 | | - "Iter 90880, Minibatch Loss= 261.051025, Training Accuracy= 0.98438\n", |
246 | | - "Iter 92160, Minibatch Loss= 59.812164, Training Accuracy= 0.98438\n", |
247 | | - "Iter 93440, Minibatch Loss= 309.307312, Training Accuracy= 0.96875\n", |
248 | | - "Iter 94720, Minibatch Loss= 626.035706, Training Accuracy= 0.95312\n", |
249 | | - "Iter 96000, Minibatch Loss= 317.929260, Training Accuracy= 0.96875\n", |
250 | | - "Iter 97280, Minibatch Loss= 196.908218, Training Accuracy= 0.97656\n", |
251 | | - "Iter 98560, Minibatch Loss= 843.143250, Training Accuracy= 0.95312\n", |
252 | | - "Iter 99840, Minibatch Loss= 389.142761, Training Accuracy= 0.96875\n", |
253 | | - "Iter 101120, Minibatch Loss= 246.468994, Training Accuracy= 0.96094\n", |
254 | | - "Iter 102400, Minibatch Loss= 110.580948, Training Accuracy= 0.98438\n", |
255 | | - "Iter 103680, Minibatch Loss= 208.350586, Training Accuracy= 0.96875\n", |
256 | | - "Iter 104960, Minibatch Loss= 506.229462, Training Accuracy= 0.94531\n", |
257 | | - "Iter 106240, Minibatch Loss= 49.548233, Training Accuracy= 0.98438\n", |
258 | | - "Iter 107520, Minibatch Loss= 728.496582, Training Accuracy= 0.92969\n", |
259 | | - "Iter 108800, Minibatch Loss= 187.256622, Training Accuracy= 0.97656\n", |
260 | | - "Iter 110080, Minibatch Loss= 273.696899, Training Accuracy= 0.97656\n", |
261 | | - "Iter 111360, Minibatch Loss= 317.126678, Training Accuracy= 0.96094\n", |
262 | | - "Iter 112640, Minibatch Loss= 148.293365, Training Accuracy= 0.98438\n", |
263 | | - "Iter 113920, Minibatch Loss= 139.360168, Training Accuracy= 0.97656\n", |
264 | | - "Iter 115200, Minibatch Loss= 167.539093, Training Accuracy= 0.98438\n", |
265 | | - "Iter 116480, Minibatch Loss= 565.433594, Training Accuracy= 0.94531\n", |
266 | | - "Iter 117760, Minibatch Loss= 8.117203, Training Accuracy= 0.99219\n", |
267 | | - "Iter 119040, Minibatch Loss= 348.071472, Training Accuracy= 0.96875\n", |
268 | | - "Iter 120320, Minibatch Loss= 287.732849, Training Accuracy= 0.97656\n", |
269 | | - "Iter 121600, Minibatch Loss= 156.525284, Training Accuracy= 0.96875\n", |
270 | | - "Iter 122880, Minibatch Loss= 296.147339, Training Accuracy= 0.98438\n", |
271 | | - "Iter 124160, Minibatch Loss= 260.941956, Training Accuracy= 0.98438\n", |
272 | | - "Iter 125440, Minibatch Loss= 241.011719, Training Accuracy= 0.98438\n", |
273 | | - "Iter 126720, Minibatch Loss= 185.330444, Training Accuracy= 0.98438\n", |
274 | | - "Iter 128000, Minibatch Loss= 346.407013, Training Accuracy= 0.96875\n", |
275 | | - "Iter 129280, Minibatch Loss= 522.477173, Training Accuracy= 0.94531\n", |
276 | | - "Iter 130560, Minibatch Loss= 97.665955, Training Accuracy= 0.96094\n", |
277 | | - "Iter 131840, Minibatch Loss= 111.370262, Training Accuracy= 0.96875\n", |
278 | | - "Iter 133120, Minibatch Loss= 106.377136, Training Accuracy= 0.97656\n", |
279 | | - "Iter 134400, Minibatch Loss= 432.294983, Training Accuracy= 0.96094\n", |
280 | | - "Iter 135680, Minibatch Loss= 104.584610, Training Accuracy= 0.98438\n", |
281 | | - "Iter 136960, Minibatch Loss= 439.611053, Training Accuracy= 0.95312\n", |
282 | | - "Iter 138240, Minibatch Loss= 171.394562, Training Accuracy= 0.96875\n", |
283 | | - "Iter 139520, Minibatch Loss= 83.505905, Training Accuracy= 0.98438\n", |
284 | | - "Iter 140800, Minibatch Loss= 240.278427, Training Accuracy= 0.98438\n", |
285 | | - "Iter 142080, Minibatch Loss= 417.140320, Training Accuracy= 0.96094\n", |
286 | | - "Iter 143360, Minibatch Loss= 77.656067, Training Accuracy= 0.97656\n", |
287 | | - "Iter 144640, Minibatch Loss= 284.589844, Training Accuracy= 0.97656\n", |
288 | | - "Iter 145920, Minibatch Loss= 372.114288, Training Accuracy= 0.96875\n", |
289 | | - "Iter 147200, Minibatch Loss= 352.900024, Training Accuracy= 0.96094\n", |
290 | | - "Iter 148480, Minibatch Loss= 148.120621, Training Accuracy= 0.97656\n", |
291 | | - "Iter 149760, Minibatch Loss= 127.385742, Training Accuracy= 0.98438\n", |
292 | | - "Iter 151040, Minibatch Loss= 383.167175, Training Accuracy= 0.96094\n", |
293 | | - "Iter 152320, Minibatch Loss= 331.846649, Training Accuracy= 0.94531\n", |
294 | | - "Iter 153600, Minibatch Loss= 0.000000, Training Accuracy= 1.00000\n", |
295 | | - "Iter 154880, Minibatch Loss= 24.065147, Training Accuracy= 0.99219\n", |
296 | | - "Iter 156160, Minibatch Loss= 43.433868, Training Accuracy= 0.99219\n", |
297 | | - "Iter 157440, Minibatch Loss= 205.383972, Training Accuracy= 0.96875\n", |
298 | | - "Iter 158720, Minibatch Loss= 83.019257, Training Accuracy= 0.97656\n", |
299 | | - "Iter 160000, Minibatch Loss= 195.710556, Training Accuracy= 0.96875\n", |
300 | | - "Iter 161280, Minibatch Loss= 177.192932, Training Accuracy= 0.95312\n", |
301 | | - "Iter 162560, Minibatch Loss= 261.618713, Training Accuracy= 0.96875\n", |
302 | | - "Iter 163840, Minibatch Loss= 0.000000, Training Accuracy= 1.00000\n", |
303 | | - "Iter 165120, Minibatch Loss= 62.901100, Training Accuracy= 0.97656\n", |
304 | | - "Iter 166400, Minibatch Loss= 17.181839, Training Accuracy= 0.98438\n", |
305 | | - "Iter 167680, Minibatch Loss= 102.738960, Training Accuracy= 0.96875\n", |
306 | | - "Iter 168960, Minibatch Loss= 0.000000, Training Accuracy= 1.00000\n", |
307 | | - "Iter 170240, Minibatch Loss= 71.784363, Training Accuracy= 0.99219\n", |
308 | | - "Iter 171520, Minibatch Loss= 260.672852, Training Accuracy= 0.96875\n", |
309 | | - "Iter 172800, Minibatch Loss= 186.616119, Training Accuracy= 0.96094\n", |
310 | | - "Iter 174080, Minibatch Loss= 312.432312, Training Accuracy= 0.96875\n", |
311 | | - "Iter 175360, Minibatch Loss= 45.828953, Training Accuracy= 0.99219\n", |
312 | | - "Iter 176640, Minibatch Loss= 62.931808, Training Accuracy= 0.98438\n", |
313 | | - "Iter 177920, Minibatch Loss= 63.452362, Training Accuracy= 0.97656\n", |
314 | | - "Iter 179200, Minibatch Loss= 53.608818, Training Accuracy= 0.98438\n", |
315 | | - "Iter 180480, Minibatch Loss= 57.089508, Training Accuracy= 0.97656\n", |
316 | | - "Iter 181760, Minibatch Loss= 601.268799, Training Accuracy= 0.93750\n", |
317 | | - "Iter 183040, Minibatch Loss= 59.850044, Training Accuracy= 0.97656\n", |
318 | | - "Iter 184320, Minibatch Loss= 145.267883, Training Accuracy= 0.96875\n", |
319 | | - "Iter 185600, Minibatch Loss= 24.205322, Training Accuracy= 0.99219\n", |
320 | | - "Iter 186880, Minibatch Loss= 51.866646, Training Accuracy= 0.98438\n", |
321 | | - "Iter 188160, Minibatch Loss= 166.911987, Training Accuracy= 0.96875\n", |
322 | | - "Iter 189440, Minibatch Loss= 32.308147, Training Accuracy= 0.98438\n", |
323 | | - "Iter 190720, Minibatch Loss= 514.898071, Training Accuracy= 0.92188\n", |
324 | | - "Iter 192000, Minibatch Loss= 146.610031, Training Accuracy= 0.98438\n", |
325 | | - "Iter 193280, Minibatch Loss= 23.939758, Training Accuracy= 0.99219\n", |
326 | | - "Iter 194560, Minibatch Loss= 224.806641, Training Accuracy= 0.97656\n", |
327 | | - "Iter 195840, Minibatch Loss= 71.935089, Training Accuracy= 0.98438\n", |
328 | | - "Iter 197120, Minibatch Loss= 182.021210, Training Accuracy= 0.96875\n", |
329 | | - "Iter 198400, Minibatch Loss= 125.573784, Training Accuracy= 0.96875\n", |
330 | | - "Iter 199680, Minibatch Loss= 122.506104, Training Accuracy= 0.96875\n", |
331 | | - "Optimization Finished!\n", |
332 | | - "Testing Accuracy: 0.972656\n" |
333 | | - ] |
334 | | - } |
335 | | - ], |
| 159 | + "outputs": [], |
336 | 160 | "source": [ |
337 | 161 | "# Launch the graph\n", |
338 | 162 | "with tf.Session() as sess:\n", |
|
361 | 185 | " y: mnist.test.labels[:256],\n", |
362 | 186 | " keep_prob: 1.})" |
363 | 187 | ] |
| 188 | + }, |
| 189 | + { |
| 190 | + "cell_type": "code", |
| 191 | + "execution_count": null, |
| 192 | + "metadata": { |
| 193 | + "collapsed": true |
| 194 | + }, |
| 195 | + "outputs": [], |
| 196 | + "source": [] |
364 | 197 | } |
365 | 198 | ], |
366 | 199 | "metadata": { |
|
372 | 205 | "language_info": { |
373 | 206 | "codemirror_mode": { |
374 | 207 | "name": "ipython", |
375 | | - "version": 2.0 |
| 208 | + "version": 2 |
376 | 209 | }, |
377 | 210 | "file_extension": ".py", |
378 | 211 | "mimetype": "text/x-python", |
379 | 212 | "name": "python", |
380 | 213 | "nbconvert_exporter": "python", |
381 | 214 | "pygments_lexer": "ipython2", |
382 | | - "version": "2.7.11" |
| 215 | + "version": "2.7.13" |
383 | 216 | } |
384 | 217 | }, |
385 | 218 | "nbformat": 4, |
|
0 commit comments