|
| 1 | +import numpy as np |
| 2 | +import pandas as pd |
| 3 | + |
| 4 | +def header(msg): |
| 5 | + print('-' * 50) |
| 6 | + print('[ ' + msg + ' ]') |
| 7 | + |
| 8 | +# 1. load hard-coded data into a dataframe |
| 9 | +header("1. load hard-coded data into a df") |
| 10 | +df = pd.DataFrame( |
| 11 | + [['Jan',58,42,74,22,2.95], |
| 12 | + ['Feb',61,45,78,26,3.02], |
| 13 | + ['Mar',65,48,84,25,2.34], |
| 14 | + ['Apr',67,50,92,28,1.02], |
| 15 | + ['May',71,53,98,35,0.48], |
| 16 | + ['Jun',75,56,107,41,0.11], |
| 17 | + ['Jul',77,58,105,44,0.0], |
| 18 | + ['Aug',77,59,102,43,0.03], |
| 19 | + ['Sep',77,57,103,40,0.17], |
| 20 | + ['Oct',73,54,96,34,0.81], |
| 21 | + ['Nov',64,48,84,30,1.7], |
| 22 | + ['Dec',58,42,73,21,2.56]], |
| 23 | + index = [0,1,2,3,4,5,6,7,8,9,10,11], |
| 24 | + columns = ['month','avg_high','avg_low','record_high','record_low','avg_precipitation']) |
| 25 | +print(df) |
| 26 | + |
| 27 | +# 2. read text file into a dataframe |
| 28 | +header("2. read text file into a df") |
| 29 | +filename = 'Fremont_weather.txt' |
| 30 | +df = pd.read_csv(filename) |
| 31 | +print(df) |
| 32 | + |
| 33 | +# 3. print first 5 or last 3 rows of df |
| 34 | +header("3. df.head()") |
| 35 | +print(df.head()) |
| 36 | +header("3. df.tail(3)") |
| 37 | +print(df.tail(3)) |
| 38 | + |
| 39 | +# 4. get data types, index, columns, values |
| 40 | +header("4. df.dtypes") |
| 41 | +print(df.dtypes) |
| 42 | + |
| 43 | +header("4. df.index") |
| 44 | +print(df.index) |
| 45 | + |
| 46 | +header("4. df.columns") |
| 47 | +print(df.columns) |
| 48 | + |
| 49 | +header("4. df.values") |
| 50 | +print(df.values) |
| 51 | + |
| 52 | +# 5. statistical summary of each column |
| 53 | +header("5. df.describe()") |
| 54 | +print(df.describe()) |
| 55 | + |
| 56 | +# 6. sort records by any column |
| 57 | +header("6. df.sort_values('record_high', ascending=False)") |
| 58 | +print (df.sort_values('record_high', ascending=False)) |
| 59 | + |
| 60 | +# 7. slicing records |
| 61 | +header("7. slicing -- df.avg_low") |
| 62 | +print(df.avg_low) # index with single column |
| 63 | + |
| 64 | +header("7. slicing -- df['avg_low']") |
| 65 | +print(df['avg_low']) |
| 66 | + |
| 67 | +header("7. slicing -- df[2:4]") # index with single column |
| 68 | +print(df[2:4]) # rows 2 to 3 |
| 69 | + |
| 70 | +header("7. slicing -- df[['avg_low','avg_high']]") |
| 71 | +print(df[['avg_low','avg_high']]) |
| 72 | + |
| 73 | +header("7. slicing -- df.loc[:,['avg_low','avg_high']]") |
| 74 | +print(df.loc[:,['avg_low','avg_high']]) # multiple columns: df.loc[from_row:to_row,['column1','column2']] |
| 75 | + |
| 76 | +header("7. slicing scalar value -- df.loc[9,['avg_precipitation']]") |
| 77 | +print(df.loc[9,['avg_precipitation']]) |
| 78 | + |
| 79 | +header("7. df.iloc[3:5,[0,3]]") # index location can receive range or list of indices |
| 80 | +print(df.iloc[3:5,[0,3]]) |
| 81 | + |
| 82 | +# 8. filtering |
| 83 | +header("8. df[df.avg_precipitation > 1.0]") # filter on column values |
| 84 | +print(df[df.avg_precipitation > 1.0]) |
| 85 | + |
| 86 | +header("8. df[df['month'].isin['Jun','Jul','Aug']]") |
| 87 | +print(df[df['month'].isin(['Jun','Jul','Aug'])]) |
| 88 | + |
| 89 | +# 9. assignment -- very similar to slicing |
| 90 | +header("9. df.loc[9,['avg_precipitation']] = 101.3") |
| 91 | +df.loc[9,['avg_precipitation']] = 101.3 |
| 92 | +print(df.iloc[9:11]) |
| 93 | + |
| 94 | +header("9. df.loc[9,['avg_precipitation']] = np.nan") |
| 95 | +df.loc[9,['avg_precipitation']] = np.nan |
| 96 | +print(df.iloc[9:11]) |
| 97 | + |
| 98 | +header("9. df.loc[:,'avg_low'] = np.array([5] * len(df))") |
| 99 | +df.loc[:,'avg_low'] = np.array([5] * len(df)) |
| 100 | +print(df.head()) |
| 101 | + |
| 102 | +header("9. df['avg_day'] = (df.avg_low + df.avg_high) / 2") |
| 103 | +df['avg_day'] = (df.avg_low + df.avg_high) / 2 |
| 104 | +print(df.head()) |
| 105 | + |
| 106 | +# 10. renaming columns |
| 107 | +header("10. df.rename(columns = {'avg_precipitation':'avg_rain'}, inplace=True)") |
| 108 | +df.rename(columns = {'avg_precipitation':'avg_rain'}, inplace=True) # rename 1 column |
| 109 | +print(df.head()) |
| 110 | + |
| 111 | +header("10. df.columns = ['month','av_hi','av_lo','rec_hi','rec_lo','av_rain','av_day']") |
| 112 | +df.columns = ['month','av_hi','av_lo','rec_hi','rec_lo','av_rain','av_day'] |
| 113 | +print(df.head()) |
| 114 | + |
| 115 | +# 11. iterate a df |
| 116 | +header("11. iterate rows of df with a for loop") |
| 117 | +for index, row in df.iterrows(): |
| 118 | + print (index, row["month"], row["avg_high"]) |
| 119 | + |
| 120 | +# 12. write to csv file |
| 121 | +df.to_csv('foo.csv') |
| 122 | + |
| 123 | + |
| 124 | + |
| 125 | + |
0 commit comments