| 
 | 1 | +import pandas as pd  | 
 | 2 | +import numpy as np  | 
 | 3 | +import matplotlib.pyplot as plt  | 
 | 4 | +from numpy import *  | 
 | 5 | +from scipy import ndimage  | 
 | 6 | + | 
 | 7 | +def bilinear_interpolate(im, x, y):  | 
 | 8 | +    x = np.asarray(x)  | 
 | 9 | +    y = np.asarray(y)  | 
 | 10 | + | 
 | 11 | +    x0 = np.floor(x).astype(int)  | 
 | 12 | +    x1 = x0 + 1  | 
 | 13 | +    y0 = np.floor(y).astype(int)  | 
 | 14 | +    y1 = y0 + 1  | 
 | 15 | + | 
 | 16 | +    x0 = np.clip(x0, 0, im.shape[1]-1);  | 
 | 17 | +    x1 = np.clip(x1, 0, im.shape[1]-1);  | 
 | 18 | +    y0 = np.clip(y0, 0, im.shape[0]-1);  | 
 | 19 | +    y1 = np.clip(y1, 0, im.shape[0]-1);  | 
 | 20 | + | 
 | 21 | +    Ia = im[ y0, x0 ]  | 
 | 22 | +    Ib = im[ y1, x0 ]  | 
 | 23 | +    Ic = im[ y0, x1 ]  | 
 | 24 | +    Id = im[ y1, x1 ]  | 
 | 25 | + | 
 | 26 | +    wa = (x1-x) * (y1-y)  | 
 | 27 | +    wb = (x1-x) * (y-y0)  | 
 | 28 | +    wc = (x-x0) * (y1-y)  | 
 | 29 | +    wd = (x-x0) * (y-y0)  | 
 | 30 | + | 
 | 31 | +    return wa*Ia + wb*Ib + wc*Ic + wd*Id  | 
 | 32 | + | 
 | 33 | +def grad(M, bound="sym", order=1):  | 
 | 34 | +    """  | 
 | 35 | +        grad - gradient, forward differences  | 
 | 36 | +          | 
 | 37 | +          [gx,gy] = grad(M, options);  | 
 | 38 | +        or  | 
 | 39 | +          g = grad(M, options);  | 
 | 40 | +          | 
 | 41 | +          options.bound = 'per' or 'sym'  | 
 | 42 | +          options.order = 1 (backward differences)  | 
 | 43 | +                        = 2 (centered differences)  | 
 | 44 | +          | 
 | 45 | +          Works also for 3D array.  | 
 | 46 | +          Assme that the function is evenly sampled with sampling step 1.  | 
 | 47 | +          | 
 | 48 | +          See also: div.  | 
 | 49 | +          | 
 | 50 | +          Copyright (c) Gabriel Peyre  | 
 | 51 | +    """      | 
 | 52 | + | 
 | 53 | + | 
 | 54 | +    # retrieve number of dimensions  | 
 | 55 | +    nbdims = np.ndim(M)  | 
 | 56 | +      | 
 | 57 | +      | 
 | 58 | +    if bound == "sym":    | 
 | 59 | +        nx = np.shape(M)[0]  | 
 | 60 | +        if order == 1:  | 
 | 61 | +            fx = M[np.hstack((np.arange(1,nx),[nx-1])),:] - M  | 
 | 62 | +        else:  | 
 | 63 | +            fx = (M[np.hstack((np.arange(1,nx),[nx-1])),:] - M[np.hstack(([0],np.arange(0,nx-1))),:])/2.  | 
 | 64 | +            # boundary  | 
 | 65 | +            fx[0,:] = M[1,:]-M[0,:]  | 
 | 66 | +            fx[nx-1,:] = M[nx-1,:]-M[nx-2,:]  | 
 | 67 | +              | 
 | 68 | +        if nbdims >= 2:  | 
 | 69 | +            ny = np.shape(M)[1]  | 
 | 70 | +            if order == 1:  | 
 | 71 | +                fy = M[:,np.hstack((np.arange(1,ny),[ny-1]))] - M  | 
 | 72 | +            else:  | 
 | 73 | +                fy = (M[:,np.hstack((np.arange(1,ny),[ny-1]))] - M[:,np.hstack(([0],np.arange(ny-1)))])/2.  | 
 | 74 | +                # boundary  | 
 | 75 | +                fy[:,0] = M[:,1]-M[:,0]  | 
 | 76 | +                fy[:,ny-1] = M[:,ny-1]-M[:,ny-2]  | 
 | 77 | +      | 
 | 78 | +        if nbdims >= 3:  | 
 | 79 | +            nz = np.shape(M)[2]  | 
 | 80 | +            if order == 1:  | 
 | 81 | +                fz = M[:,:,np.hstack((np.arange(1,nz),[nz-1]))] - M  | 
 | 82 | +            else:  | 
 | 83 | +                fz = (M[:,:,np.hstack((np.arange(1,nz),[nz-1]))] - M[:,:,np.hstack(([0],np.arange(nz-1)))])/2.  | 
 | 84 | +                # boundary  | 
 | 85 | +                fz[:,:,0] = M[:,:,1]-M[:,:,0]  | 
 | 86 | +                fz[:,:,ny-1] = M[:,:,nz-1]-M[:,:,nz-2]              | 
 | 87 | +    else:  | 
 | 88 | +        nx = np.shape(M)[0]  | 
 | 89 | +        if order == 1:  | 
 | 90 | +            fx = M[np.hstack((np.arange(1,nx),[0])),:] - M  | 
 | 91 | +        else:  | 
 | 92 | +            fx = (M[np.hstack((np.arange(1,nx),[0])),:] - M[np.hstack(([nx-1],np.arange(nx-1))),:])/2.  | 
 | 93 | +              | 
 | 94 | +        if nbdims >= 2:  | 
 | 95 | +            ny = np.shape(M)[1]  | 
 | 96 | +            if order == 1:  | 
 | 97 | +                fy = M[:,np.hstack((np.arange(1,ny),[0]))] - M  | 
 | 98 | +            else:  | 
 | 99 | +                fy = (M[:,np.hstack((np.arange(1,ny),[0]))] - M[:,np.hstack(([ny-1],np.arange(ny-1)))])/2.  | 
 | 100 | +          | 
 | 101 | +        if nbdims >= 3:  | 
 | 102 | +            nz = np.shape(M)[2]  | 
 | 103 | +            if order == 1:  | 
 | 104 | +                fz = M[:,:,np.hstack((np.arange(1,nz),[0]))] - M  | 
 | 105 | +            else:  | 
 | 106 | +                fz = (M[:,:,np.hstack((np.arange(1,nz),[0]))] - M[:,:,np.hstack(([nz-1],np.arange(nz-1)))])/2.     | 
 | 107 | +     | 
 | 108 | +    if nbdims==2:  | 
 | 109 | +        fx = np.concatenate((fx[:,:,np.newaxis],fy[:,:,np.newaxis]), axis=2)  | 
 | 110 | +    elif nbdims==3:  | 
 | 111 | +        fx = np.concatenate((fx[:,:,:,np.newaxis],fy[:,:,:,np.newaxis],fz[:,:,:,np.newaxis]),axis=3)  | 
 | 112 | +      | 
 | 113 | +    return fx  | 
 | 114 | + | 
 | 115 | +def imageplot(f, str='', sbpt=[]):  | 
 | 116 | +    """  | 
 | 117 | +        Use nearest neighbor interpolation for the display.  | 
 | 118 | +    """  | 
 | 119 | +    if sbpt != []:  | 
 | 120 | +        plt.subplot(sbpt[0], sbpt[1], sbpt[2])  | 
 | 121 | +    imgplot = plt.imshow(f, interpolation='nearest')  | 
 | 122 | +    imgplot.set_cmap('gray')  | 
 | 123 | +    plt.axis('off')  | 
 | 124 | + | 
 | 125 | +def perform_dijstra_fm(W, pstart, niter=np.inf, method='dijstr', bound='sym', svg_rate=10):  | 
 | 126 | +    n = W.shape[0]  | 
 | 127 | +    neigh = np.array([[1, -1, 0, 0], [0, 0,  1, -1]])  | 
 | 128 | + | 
 | 129 | +    def symmetrize(x,n):  | 
 | 130 | +        if (x<0):  | 
 | 131 | +            x = -x;  | 
 | 132 | +        elif (x>=n):  | 
 | 133 | +            x = 2*(n-1)-x  | 
 | 134 | +        return x  | 
 | 135 | + | 
 | 136 | +    if bound=='per':  | 
 | 137 | +        boundary = lambda x: np.mod(x,n)  | 
 | 138 | +    else:  | 
 | 139 | +        boundary = lambda x: [symmetrize(x[0],n), symmetrize(x[1],n)] # todo  | 
 | 140 | + | 
 | 141 | +    ind2sub1 = lambda k: [int( (k-np.fmod(k,n))/n ), np.fmod(k,n)]  | 
 | 142 | +    sub2ind1 = lambda u: int( u[0]*n + u[1] )  | 
 | 143 | +    Neigh = lambda k,i: sub2ind1(boundary(ind2sub1(k) + neigh[:,i]))  | 
 | 144 | +    extract   = lambda x,I: x[I]  | 
 | 145 | +    extract1d = lambda x,I: extract(x.flatten(),I)  | 
 | 146 | + | 
 | 147 | +    nstart = pstart.shape[1]  | 
 | 148 | +    I = list( np.zeros( (nstart, 1) ) )  | 
 | 149 | +    for i in np.arange(0, nstart):  | 
 | 150 | +        I[i] = int( sub2ind1(pstart[:,i]) )  | 
 | 151 | + | 
 | 152 | +    D = np.zeros( (n,n) ) + np.inf # current distance  | 
 | 153 | +    for i in np.arange(0, nstart):  | 
 | 154 | +        D[pstart[0,i],pstart[1,i]] = 0  | 
 | 155 | + | 
 | 156 | +    S = np.zeros( (n,n) )  | 
 | 157 | +    for i in np.arange(0, nstart):  | 
 | 158 | +        S[pstart[0,i],pstart[1,i]] = 1 # open  | 
 | 159 | + | 
 | 160 | +    iter = 0  | 
 | 161 | +    q = 100  # maximum number of saves  | 
 | 162 | +    Dsvg = np.zeros( (n,n,q) )  | 
 | 163 | +    Ssvg = np.zeros( (n,n,q) )  | 
 | 164 | +    while ( not(I==[]) & (iter<=niter) ):  | 
 | 165 | +        iter = iter+1;  | 
 | 166 | +        if iter==niter:  | 
 | 167 | +            break  | 
 | 168 | +        j = np.argsort( extract1d(D,I)  )  | 
 | 169 | +        if np.ndim(j)==0:  | 
 | 170 | +            j = [j]  | 
 | 171 | +        j = j[0]  | 
 | 172 | +        i = I[j]  | 
 | 173 | +        a = I.pop(j)  | 
 | 174 | +        u = ind2sub1(i);  | 
 | 175 | +        S[u[0],u[1]] = -1  | 
 | 176 | +        J = []  | 
 | 177 | +        for k in np.arange(0,4):  | 
 | 178 | +            j = Neigh(i,k)  | 
 | 179 | +            if extract1d(S,j)!=-1:  | 
 | 180 | +                J.append(j)  | 
 | 181 | +                if extract1d(S,j)==0:  | 
 | 182 | +                    u = ind2sub1(j)  | 
 | 183 | +                    S[u[0],u[1]] = 1  | 
 | 184 | +                    I.append(j)  | 
 | 185 | +        DNeigh = lambda D,k: extract1d(D,Neigh(j,k))  | 
 | 186 | +        for j in J:  | 
 | 187 | +            dx = min(DNeigh(D,0), DNeigh(D,1))  | 
 | 188 | +            dy = min(DNeigh(D,2), DNeigh(D,3))  | 
 | 189 | +            u = ind2sub1(j)  | 
 | 190 | +            w = extract1d(W,j);  | 
 | 191 | +            if method=='dijstr':  | 
 | 192 | +                D[u[0],u[1]] = min(dx + w, dy + w)  | 
 | 193 | +            else:  | 
 | 194 | +                Delta = 2*w - (dx-dy)**2  | 
 | 195 | +                if (Delta>=0):  | 
 | 196 | +                    D[u[0],u[1]] = (dx + dy + np.sqrt(Delta))/ 2  | 
 | 197 | +                else:  | 
 | 198 | +                    D[u[0],u[1]] = min(dx + w, dy + w)  | 
 | 199 | +        t = iter/svg_rate  | 
 | 200 | +        if (np.mod(iter,svg_rate)==0) & (t<q):  | 
 | 201 | +            print (t)  | 
 | 202 | +            Dsvg[:,:,int(t-1)] = D  | 
 | 203 | +            Ssvg[:,:,int(t-1)] = S  | 
 | 204 | + | 
 | 205 | +    Dsvg = Dsvg[:,:,:int(t-1)]  | 
 | 206 | +    Ssvg = Ssvg[:,:,:int(t-1)]  | 
 | 207 | +    return (D,Dsvg,Ssvg);  | 
 | 208 | + | 
 | 209 | +def exo3(x0,W):  | 
 | 210 | +    """  | 
 | 211 | +    Compute the distance map to these starting point using the FM algorithm.  | 
 | 212 | +    """  | 
 | 213 | +    n = W.shape[0]  | 
 | 214 | +    pstart = transpose(array([x0]))  | 
 | 215 | +    [D,Dsvg,Ssvg] = perform_dijstra_fm(W, pstart, inf,'fm', 'sym',n*6)  | 
 | 216 | +    # display  | 
 | 217 | +    k = 8  | 
 | 218 | +    displ = lambda D: cos(2*pi*k*D/ max(D.flatten()))  | 
 | 219 | +    plt.figure()  | 
 | 220 | +    imageplot(displ(D))  | 
 | 221 | +    plt.set_cmap('jet')  | 
 | 222 | +    plt.savefig('out-560.png')  | 
 | 223 | +    return D  | 
 | 224 | + | 
 | 225 | + | 
 | 226 | +def exo4(tau,x0,x1,G):  | 
 | 227 | +    """  | 
 | 228 | +    Perform the full geodesic path extraction by iterating the gradient  | 
 | 229 | +    descent. You must be very careful when the path become close to  | 
 | 230 | +    $x_0$, because the distance function is not differentiable at this  | 
 | 231 | +    point. You must stop the iteration when the path is close to $x_0$.  | 
 | 232 | +    """  | 
 | 233 | +    n = G.shape[0]  | 
 | 234 | +    Geval = lambda G,x: bilinear_interpolate(G[:,:,0], imag(x), real(x) ) + 1j * bilinear_interpolate(G[:,:,1],imag(x), real(x))  | 
 | 235 | +    niter = 1.5*n/tau;  | 
 | 236 | +    # init gamma  | 
 | 237 | +    gamma = [x1]  | 
 | 238 | +    xtgt = x0[0] + 1j*x0[1]  | 
 | 239 | +    for i in arange(0,niter):  | 
 | 240 | +        g = Geval(G, gamma[-1] )  | 
 | 241 | +        gamma.append( gamma[-1] - tau*g )  | 
 | 242 | +        if abs(gamma[-1]-xtgt)<1:  | 
 | 243 | +            break  | 
 | 244 | +    gamma.append( xtgt )  | 
 | 245 | +    return gamma  | 
 | 246 | + | 
 | 247 | + | 
 | 248 | +n = 100  | 
 | 249 | +x = linspace(-1, 1, n)  | 
 | 250 | +[Y, X] = meshgrid(x, x)  | 
 | 251 | +sigma = .2  | 
 | 252 | +W = 1 + 8 * exp(-(X**2 + Y**2)/ (2*sigma**2))  | 
 | 253 | +x0 = [round(.1*n), round(.1*n)]  | 
 | 254 | +D = exo3(x0,W)  | 
 | 255 | + | 
 | 256 | +G0 = grad(D)  | 
 | 257 | +d = sqrt(sum(G0**2, axis=2))  | 
 | 258 | +U = zeros((n,n,2))  | 
 | 259 | +U[:,:,0] = d  | 
 | 260 | +U[:,:,1] = d  | 
 | 261 | +G = G0 / U  | 
 | 262 | +tau = .8  | 
 | 263 | +x1 = round(.9*n) + 1j*round(.88*n)  | 
 | 264 | +gamma = [x1]  | 
 | 265 | + | 
 | 266 | +Geval = lambda G,x: bilinear_interpolate(G[:,:,0], imag(x), real(x) ) + 1j * bilinear_interpolate(G[:,:,1],imag(x), real(x))  | 
 | 267 | +g = Geval(G, gamma[-1] )  | 
 | 268 | +gamma.append( gamma[-1] - tau*g )  | 
 | 269 | +gamma = exo4(tau,x0,x1,G)  | 
 | 270 | + | 
 | 271 | +imageplot(W)   | 
 | 272 | +plt.set_cmap('gray')  | 
 | 273 | +h = plt.plot(imag(gamma), real(gamma), '.b', linewidth=2)  | 
 | 274 | +h = plt.plot(x0[1], x0[0], '.r', markersize=20)  | 
 | 275 | +h = plt.plot(imag(x1), real(x1), '.g', markersize=20)  | 
 | 276 | +plt.savefig('out-760.png')  | 
 | 277 | + | 
0 commit comments