|
16 | 16 | from sklearn import neighbors |
17 | 17 |
|
18 | 18 | from data import chosen, chosen_meta |
19 | | -from utils import plot_roc, plot_pr |
| 19 | +from utils import plot_pr |
20 | 20 | from utils import plot_feat_importance |
21 | 21 | from utils import load_meta |
22 | 22 | from utils import fetch_posts |
@@ -210,11 +210,8 @@ def k_complexity_analysis(clf_class, parameters): |
210 | 210 |
|
211 | 211 | for k in [5]: # [5, 10, 40, 90]: |
212 | 212 | bias_variance_analysis(neighbors.KNeighborsClassifier, { |
213 | | - 'n_neighbors': k, 'warn_on_equidistant': False}, "%iNN" % k) |
214 | | - k_complexity_analysis(neighbors.KNeighborsClassifier, {'n_neighbors': k, |
215 | | - 'warn_on_equidistant': False}) |
216 | | - # measure(neighbors.KNeighborsClassifier, {'n_neighbors': k, 'p': 2, |
217 | | - #'warn_on_equidistant': False}, "%iNN" % k) |
| 213 | + 'n_neighbors': k}, "%iNN" % k) |
| 214 | + k_complexity_analysis(neighbors.KNeighborsClassifier, {'n_neighbors': k}) |
218 | 215 |
|
219 | 216 | from sklearn.linear_model import LogisticRegression |
220 | 217 | for C in [0.1]: # [0.01, 0.1, 1.0, 10.0]: |
|
0 commit comments