88from __future__ import print_function
99from all_correlations import all_correlations
1010import numpy as np
11- from scipy import sparse
1211from load_ml100k import load
13- reviews = load ()
14-
15-
1612def estimate_user (user , rest ):
1713 bu = user > 0
1814 br = rest > 0
@@ -34,7 +30,17 @@ def train_test(user, rest):
3430 return np .dot (err , err ), np .dot (nerr , nerr )
3531
3632
37- def cross_validate_all ():
33+ def all_estimates (reviews ):
34+ reviews = reviews .toarray ()
35+ estimates = np .zeros_like (reviews )
36+ for i in xrange (reviews .shape [0 ]):
37+ estimates [i ] = estimate_user (reviews [i ], np .delete (reviews , i , 0 ))
38+ return estimates
39+
40+ def main ():
41+ reviews = load ()
42+ reviews = reviews .toarray ()
43+
3844 err = []
3945 for i in xrange (reviews .shape [0 ]):
4046 err .append (
@@ -46,10 +52,5 @@ def cross_validate_all():
4652 print (np .mean (rmse , 0 ))
4753 print (np .mean (rmse [revs > 60 ], 0 ))
4854
49-
50- def all_estimates (reviews ):
51- reviews = reviews .toarray ()
52- estimates = np .zeros_like (reviews )
53- for i in xrange (reviews .shape [0 ]):
54- estimates [i ] = estimate_user (reviews [i ], np .delete (reviews , i , 0 ))
55- return estimates
55+ if __name__ == '__main__' :
56+ main ()
0 commit comments