You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
本课程我们主要探讨人工智能中的机器学习(Machine Learning)。机器学习是人工智能的一个子领域,关注如何通过数据和算法来使计算机系统从经验中学习并进行预测或决策。简单的说,机器学习是实现人工智能的一种方法,有很多 AI 系统都是通过机器学习技术开发的。有的时候,我们也用数据挖掘(Data Mining)这个词来指代机器学习,所谓的数据挖掘就是从数据中提取有用的信息和知识,分析和解释数据中的模式和趋势,最终达成预测未来趋势和行为的目标。当然,我们在提到这两个词的时候,表达的侧重点还是有所区别,数据挖掘主要关注知识发现,而机器学习侧重于构建和优化预测模型。
5
+
本课程我们主要探讨人工智能中的机器学习(Machine Learning)。机器学习是人工智能的一个子领域,关注如何通过数据和算法来使计算机系统从经验中学习并进行预测或决策。简单的说,机器学习是实现人工智能的一种方法,有很多 AI 系统都是通过机器学习技术开发的。在一些特定场景,人们也用数据挖掘(Data Mining)这个词来指代机器学习,所谓的数据挖掘就是从数据中提取有用的信息和知识,分析和解释数据中的模式和趋势,最终达成预测未来趋势和行为的目标。当然,我们在提到这两个词的时候,表达的侧重点还是有所区别,数据挖掘主要关注知识发现,而机器学习侧重于构建和优化预测模型。当下,还有一个非常热门的概念和研究领域叫深度学习(Deep Learning),它是机器学习的一个子领域,特别侧重于使用多层神经网络(深度神经网络)来进行数据处理和学习。深度学习在处理图像、语音和自然语言等复杂数据时表现出色,能够自动学习数据的层次化特征,从而降低人工干预的需求。当然,深度学习模型通常比传统的机器学习模型更复杂,且需要更多的数据和计算资源。
接下来为大家隆重介绍一下我们后续会使用到的一个重要的数据集——鸢尾花数据集(iris dataset)。鸢尾花数据集是机器学习领域中最著名、最经典的数据集之一,由英国统计学家 *Ronald A. Fisher*于1936年在他的论文*《The Use of Multiple Measurements in Taxonomic Problems》*中首次引入,被广泛用于机器学习算法的入门和实验。
39
+
接下来为大家隆重介绍一下我们后续会使用到的一个重要的数据集——鸢尾花数据集(iris dataset)。鸢尾花数据集是机器学习领域中最著名、最经典的数据集之一,由英国统计学家 *Ronald A. Fisher* 于 1936 年在他的论文*《The Use of Multiple Measurements in Taxonomic Problems》*中首次引入,被广泛用于机器学习算法的入门和实验。
0 commit comments