@@ -127,30 +127,6 @@ class CalibratedClassifierCV(ClassifierMixin,
127127
128128 .. versionadded:: 0.24
129129
130- pre_dispatch : int or str, default='2*n_jobs'
131- Controls the number of jobs that get dispatched during parallel
132- execution. Reducing this number can be useful to avoid an
133- explosion of memory consumption when more jobs get dispatched
134- than CPUs can process. This parameter can be:
135-
136- - None, in which case all the jobs are immediately
137- created and spawned. Use this for lightweight and
138- fast-running jobs, to avoid delays due to on-demand
139- spawning of the jobs
140-
141- - An int, giving the exact number of total jobs that are
142- spawned
143-
144- - A str, giving an expression as a function of n_jobs,
145- as in '2*n_jobs'
146-
147- .. versionadded:: 0.24
148-
149- verbose : int, default=0
150- Controls the verbosity: the higher, the more messages.
151-
152- .. versionadded:: 0.24
153-
154130 Attributes
155131 ----------
156132 classes_ : ndarray of shape (n_classes,)
@@ -217,14 +193,11 @@ class CalibratedClassifierCV(ClassifierMixin,
217193 """
218194 @_deprecate_positional_args
219195 def __init__ (self , base_estimator = None , * , method = 'sigmoid' ,
220- cv = None , n_jobs = None , pre_dispatch = '2*n_jobs' ,
221- verbose = 0 ):
196+ cv = None , n_jobs = None ):
222197 self .base_estimator = base_estimator
223198 self .method = method
224199 self .cv = cv
225200 self .n_jobs = n_jobs
226- self .verbose = verbose
227- self .pre_dispatch = pre_dispatch
228201
229202 def fit (self , X , y , sample_weight = None ):
230203 """Fit the calibrated model
@@ -304,8 +277,7 @@ def fit(self, X, y, sample_weight=None):
304277 "sample weights will only be used for the "
305278 "calibration itself." % estimator_name )
306279
307- parallel = Parallel (n_jobs = self .n_jobs , verbose = self .verbose ,
308- pre_dispatch = self .pre_dispatch )
280+ parallel = Parallel (n_jobs = self .n_jobs )
309281
310282 self .calibrated_classifiers_ = parallel (delayed (
311283 _fit_calibrated_classifer )(clone (base_estimator ),
0 commit comments