Skip to content

Commit 6a2ccb9

Browse files
authored
Merge branch 'live' into master
2 parents b8a2a09 + b56d166 commit 6a2ccb9

File tree

1 file changed

+4
-3
lines changed

1 file changed

+4
-3
lines changed

dotnet/xml/Microsoft.ML.Runtime.FactorizationMachine/FieldAwareFactorizationMachineTrainer.xml

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -29,8 +29,9 @@
2929
The algorithm is particularly useful for high dimensional datasets which can be very sparse (e.g. click-prediction for advertising systems).
3030
<para>An advantage of FFM over SVMs is that the training data does not need to be stored in memory, and the coefficients can be optimized directly.
3131
For a general idea of what Field-aware Factorization Machines are see: <a href="https://www.csie.ntu.edu.tw/~r01922136/slides/ffm.pdf">Field Aware Factorization Machines</a></para><para>See references below for more details.
32-
This trainer is essentially faster the one introduced in [2] because of some implemtation tricks[3].
33-
</para><list type="bullet"><item><description><a href="https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf">Field-aware Factorization Machines for CTR Prediction</a></description></item><item><description><a href="http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf">Adaptive Subgradient Methods for Online Learning and Stochastic Optimization</a></description></item><item><description><a href="https://github.com/wschin/fast-ffm/blob/master/fast-ffm.pdf">An Improved Stochastic Gradient Method for Training Large-scale Field-aware Factorization Machine.</a></description></item></list></remarks>
32+
33+
This trainer is essentially faster than the one introduced in [2] because of some implementation optimizations[3].
34+
</para><list type="bullet"><item><description><a href="http://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf">Field-aware Factorization Machines for CTR Prediction</a></description></item><item><description><a href="http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf">Adaptive Subgradient Methods for Online Learning and Stochastic Optimization</a></description></item><item><description><a href="https://github.com/wschin/fast-ffm/blob/master/fast-ffm.pdf">An Improved Stochastic Gradient Method for Training Large-scale Field-aware Factorization Machine.</a></description></item></list></remarks>
3435
</Docs>
3536
<Members>
3637
<Member MemberName=".ctor">
@@ -327,4 +328,4 @@
327328
</Docs>
328329
</Member>
329330
</Members>
330-
</Type>
331+
</Type>

0 commit comments

Comments
 (0)