@@ -82,14 +82,14 @@ class CV_EXPORTS ERFilterNM : public ERFilter
82
82
83
83
// the key method. Takes image on input, vector of ERStat is output for the first stage,
84
84
// input/output - for the second one.
85
- void run ( cv:: InputArray image, std::vector<ERStat>& regions );
85
+ void run ( InputArray image, std::vector<ERStat>& regions );
86
86
87
87
protected:
88
88
int thresholdDelta;
89
89
float maxArea;
90
90
float minArea;
91
91
92
- cv:: Ptr<ERFilter::Callback> classifier;
92
+ Ptr<ERFilter::Callback> classifier;
93
93
94
94
// count of the rejected/accepted regions
95
95
int num_rejected_regions;
@@ -98,7 +98,7 @@ class CV_EXPORTS ERFilterNM : public ERFilter
98
98
public:
99
99
100
100
// set/get methods to set the algorithm properties,
101
- void setCallback (const cv:: Ptr<ERFilter::Callback>& cb);
101
+ void setCallback (const Ptr<ERFilter::Callback>& cb);
102
102
void setThresholdDelta (int thresholdDelta);
103
103
void setMinArea (float minArea);
104
104
void setMaxArea (float maxArea);
@@ -111,10 +111,10 @@ class CV_EXPORTS ERFilterNM : public ERFilter
111
111
// pointer to the input/output regions vector
112
112
std::vector<ERStat> *regions;
113
113
// image mask used for feature calculations
114
- cv:: Mat region_mask;
114
+ Mat region_mask;
115
115
116
116
// extract the component tree and store all the ER regions
117
- void er_tree_extract ( cv:: InputArray image );
117
+ void er_tree_extract ( InputArray image );
118
118
// accumulate a pixel into an ER
119
119
void er_add_pixel ( ERStat *parent, int x, int y, int non_boundary_neighbours,
120
120
int non_boundary_neighbours_horiz,
@@ -126,7 +126,7 @@ class CV_EXPORTS ERFilterNM : public ERFilter
126
126
// copy extracted regions into the output vector
127
127
ERStat* er_save ( ERStat *er, ERStat *parent, ERStat *prev );
128
128
// recursively walk the tree and filter (remove) regions using the callback classifier
129
- ERStat* er_tree_filter ( cv:: InputArray image, ERStat *stat, ERStat *parent, ERStat *prev );
129
+ ERStat* er_tree_filter ( InputArray image, ERStat *stat, ERStat *parent, ERStat *prev );
130
130
// recursively walk the tree selecting only regions with local maxima probability
131
131
ERStat* er_tree_nonmax_suppression ( ERStat *er, ERStat *parent, ERStat *prev );
132
132
};
@@ -184,7 +184,7 @@ ERFilterNM::ERFilterNM()
184
184
185
185
// the key method. Takes image on input, vector of ERStat is output for the first stage,
186
186
// input/output for the second one.
187
- void ERFilterNM::run ( cv:: InputArray image, std::vector<ERStat>& _regions )
187
+ void ERFilterNM::run ( InputArray image, std::vector<ERStat>& _regions )
188
188
{
189
189
190
190
// assert correct image type
@@ -222,7 +222,7 @@ void ERFilterNM::run( cv::InputArray image, std::vector<ERStat>& _regions )
222
222
// extract the component tree and store all the ER regions
223
223
// uses the algorithm described in
224
224
// Linear time maximally stable extremal regions, D Nistér, H Stewénius – ECCV 2008
225
- void ERFilterNM::er_tree_extract ( cv:: InputArray image )
225
+ void ERFilterNM::er_tree_extract ( InputArray image )
226
226
{
227
227
228
228
Mat src = image.getMat ();
@@ -749,7 +749,7 @@ ERStat* ERFilterNM::er_save( ERStat *er, ERStat *parent, ERStat *prev )
749
749
}
750
750
751
751
// recursively walk the tree and filter (remove) regions using the callback classifier
752
- ERStat* ERFilterNM::er_tree_filter ( cv:: InputArray image, ERStat * stat, ERStat *parent, ERStat *prev )
752
+ ERStat* ERFilterNM::er_tree_filter ( InputArray image, ERStat * stat, ERStat *parent, ERStat *prev )
753
753
{
754
754
Mat src = image.getMat ();
755
755
// assert correct image type
@@ -820,7 +820,7 @@ ERStat* ERFilterNM::er_tree_filter ( cv::InputArray image, ERStat * stat, ERStat
820
820
{
821
821
822
822
vector<Point> hull;
823
- cv:: convexHull (contours[0 ], hull, false );
823
+ convexHull (contours[0 ], hull, false );
824
824
hull_area = (int )contourArea (hull);
825
825
}
826
826
@@ -1072,7 +1072,7 @@ double ERClassifierNM2::eval(const ERStat& stat)
1072
1072
\param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities
1073
1073
\param minProbability The minimum probability difference between local maxima and local minima ERs
1074
1074
*/
1075
- Ptr<ERFilter> createERFilterNM1 (const cv:: Ptr<ERFilter::Callback>& cb, int thresholdDelta,
1075
+ Ptr<ERFilter> createERFilterNM1 (const Ptr<ERFilter::Callback>& cb, int thresholdDelta,
1076
1076
float minArea, float maxArea, float minProbability,
1077
1077
bool nonMaxSuppression, float minProbabilityDiff)
1078
1078
{
@@ -1111,7 +1111,7 @@ Ptr<ERFilter> createERFilterNM1(const cv::Ptr<ERFilter::Callback>& cb, int thres
1111
1111
if omitted tries to load a default classifier from file trained_classifierNM2.xml
1112
1112
\param minProbability The minimum probability P(er|character) allowed for retreived ER's
1113
1113
*/
1114
- Ptr<ERFilter> createERFilterNM2 (const cv:: Ptr<ERFilter::Callback>& cb, float minProbability)
1114
+ Ptr<ERFilter> createERFilterNM2 (const Ptr<ERFilter::Callback>& cb, float minProbability)
1115
1115
{
1116
1116
1117
1117
CV_Assert ( (minProbability >= 0 .) && (minProbability <= 1 .) );
0 commit comments