Skip to content

Commit aa46347

Browse files
committed
Fix missing space for nested li
1 parent 614c349 commit aa46347

File tree

1 file changed

+36
-36
lines changed

1 file changed

+36
-36
lines changed

README.md

Lines changed: 36 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -62,20 +62,20 @@
6262
*pop*, which removes the most recently added element
6363
* Last in, first out data structure (LIFO)
6464
* Time Complexity:
65-
* Access: `O(n)`
66-
* Search: `O(n)`
67-
* Insert: `O(1)`
68-
* Remove: `O(1)`
65+
* Access: `O(n)`
66+
* Search: `O(n)`
67+
* Insert: `O(1)`
68+
* Remove: `O(1)`
6969

7070
### Queue
7171
* A *Queue* is a collection of elements, supporting two principle operations: *enqueue*, which inserts an element
7272
into the queue, and *dequeue*, which removes an element from the queue
7373
* First in, first out data structure (FIFO)
7474
* Time Complexity:
75-
* Access: `O(n)`
76-
* Search: `O(n)`
77-
* Insert: `O(1)`
78-
* Remove: `O(1)`
75+
* Access: `O(n)`
76+
* Search: `O(n)`
77+
* Insert: `O(1)`
78+
* Remove: `O(1)`
7979

8080
### Tree
8181
* A *Tree* is an undirected, connected, acyclic graph
@@ -93,10 +93,10 @@
9393
node must be greater than or equal to any value stored in the left sub-tree, and less than or equal to any value stored
9494
in the right sub-tree
9595
* Time Complexity:
96-
* Access: `O(log(n))`
97-
* Search: `O(log(n))`
98-
* Insert: `O(log(n))`
99-
* Remove: `O(log(n))`
96+
* Access: `O(log(n))`
97+
* Search: `O(log(n))`
98+
* Insert: `O(log(n))`
99+
* Remove: `O(log(n))`
100100

101101
<img src="/Images/BST.png?raw=true" alt="Binary Search Tree" width="400" height="500">
102102

@@ -115,17 +115,17 @@
115115
a range of values, and by combining that sum with additional ranges encountered during an upward traversal to the root, the prefix
116116
sum is calculated
117117
* Time Complexity:
118-
* Range Sum: `O(log(n))`
119-
* Update: `O(log(n))`
118+
* Range Sum: `O(log(n))`
119+
* Update: `O(log(n))`
120120

121121
![Alt text](/Images/fenwickTree.png?raw=true "Fenwick Tree")
122122

123123
### Segment Tree
124124
* A Segment tree, is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain
125125
a given point
126126
* Time Complexity:
127-
* Range Query: `O(log(n))`
128-
* Update: `O(log(n))`
127+
* Range Query: `O(log(n))`
128+
* Update: `O(log(n))`
129129

130130
![Alt text](/Images/segmentTree.png?raw=true "Segment Tree")
131131

@@ -136,9 +136,9 @@ A heap can be classified further as either a "max heap" or a "min heap". In a ma
136136
than or equal to those of the children and the highest key is in the root node. In a min heap, the keys of parent nodes are less than
137137
or equal to those of the children and the lowest key is in the root node
138138
* Time Complexity:
139-
* Access Max / Min: `O(1)`
140-
* Insert: `O(log(n))`
141-
* Remove Max / Min: `O(log(n))`
139+
* Access Max / Min: `O(1)`
140+
* Insert: `O(log(n))`
141+
* Remove Max / Min: `O(log(n))`
142142

143143
<img src="/Images/heap.png?raw=true" alt="Max Heap" width="400" height="500">
144144

@@ -177,9 +177,9 @@ or equal to those of the children and the lowest key is in the root node
177177
#### Quicksort
178178
* Stable: `No`
179179
* Time Complexity:
180-
* Best Case: `O(nlog(n))`
181-
* Worst Case: `O(n^2)`
182-
* Average Case: `O(nlog(n))`
180+
* Best Case: `O(nlog(n))`
181+
* Worst Case: `O(n^2)`
182+
* Average Case: `O(nlog(n))`
183183

184184
![Alt text](/Images/quicksort.gif?raw=true "Quicksort")
185185

@@ -188,29 +188,29 @@ or equal to those of the children and the lowest key is in the root node
188188
left subarray and right subarray and then merges the two sorted halves
189189
* Stable: `Yes`
190190
* Time Complexity:
191-
* Best Case: `O(nlog(n))`
192-
* Worst Case: `O(nlog(n))`
193-
* Average Case: `O(nlog(n))`
191+
* Best Case: `O(nlog(n))`
192+
* Worst Case: `O(nlog(n))`
193+
* Average Case: `O(nlog(n))`
194194

195195
![Alt text](/Images/mergesort.gif?raw=true "Mergesort")
196196

197197
#### Bucket Sort
198198
* *Bucket Sort* is a sorting algorithm that works by distributing the elements of an array into a number of buckets. Each bucket
199199
is then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sorting algorithm
200200
* Time Complexity:
201-
* Best Case: `Ω(n + k)`
202-
* Worst Case: `O(n^2)`
203-
* Average Case:`Θ(n + k)`
201+
* Best Case: `Ω(n + k)`
202+
* Worst Case: `O(n^2)`
203+
* Average Case:`Θ(n + k)`
204204

205205
![Alt text](/Images/bucketsort.png?raw=true "Bucket Sort")
206206

207207
#### Radix Sort
208208
* *Radix Sort* is a sorting algorithm that like bucket sort, distributes elements of an array into a number of buckets. However, radix
209209
sort differs from bucket sort by 're-bucketing' the array after the initial pass as opposed to sorting each bucket and merging
210210
* Time Complexity:
211-
* Best Case: `Ω(nk)`
212-
* Worst Case: `O(nk)`
213-
* Average Case: `Θ(nk)`
211+
* Best Case: `Ω(nk)`
212+
* Worst Case: `O(nk)`
213+
* Average Case: `Θ(nk)`
214214

215215
### Graph Algorithms
216216

@@ -243,8 +243,8 @@ or equal to those of the children and the lowest key is in the root node
243243
* Although it is slower than Dijkstra's, it is more versatile, as it is capable of handling graphs in which some of the edge weights are
244244
negative numbers
245245
* Time Complexity:
246-
* Best Case: `O(|E|)`
247-
* Worst Case: `O(|V||E|)`
246+
* Best Case: `O(|E|)`
247+
* Worst Case: `O(|V||E|)`
248248

249249
![Alt text](/Images/bellman-ford.gif?raw=true "Bellman-Ford")
250250

@@ -253,9 +253,9 @@ or equal to those of the children and the lowest key is in the root node
253253
no negative cycles
254254
* A single execution of the algorithm will find the lengths (summed weights) of the shortest paths between *all* pairs of nodes
255255
* Time Complexity:
256-
* Best Case: `O(|V|^3)`
257-
* Worst Case: `O(|V|^3)`
258-
* Average Case: `O(|V|^3)`
256+
* Best Case: `O(|V|^3)`
257+
* Worst Case: `O(|V|^3)`
258+
* Average Case: `O(|V|^3)`
259259

260260
#### Prim's Algorithm
261261
* *Prim's Algorithm* is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. In other words, Prim's find a

0 commit comments

Comments
 (0)