@@ -224,7 +224,7 @@ def fit(self, X, y, sample_weight=None):
224224 Parameters
225225 ----------
226226 X : array-like of shape = [n_samples, n_features]
227- The training input samples.
227+ The training input samples. Supports both dense and sparse input.
228228
229229 y : array-like, shape = [n_samples]
230230 The target values (class labels in classification, real numbers in
@@ -505,7 +505,7 @@ def predict(self, X):
505505 Parameters
506506 ----------
507507 X : array-like of shape = [n_samples, n_features]
508- The input samples.
508+ The input samples. Supports both dense and sparse input.
509509
510510 Returns
511511 -------
@@ -528,7 +528,7 @@ def predict_proba(self, X):
528528 Parameters
529529 ----------
530530 X : array-like of shape = [n_samples, n_features]
531- The input samples.
531+ The input samples. Supports both dense and sparse input.
532532
533533 Returns
534534 -------
@@ -571,7 +571,7 @@ def predict_log_proba(self, X):
571571 Parameters
572572 ----------
573573 X : array-like of shape = [n_samples, n_features]
574- The input samples.
574+ The input samples. Supports both dense and sparse input.
575575
576576 Returns
577577 -------
@@ -619,7 +619,7 @@ def decision_function(self, X):
619619 Parameters
620620 ----------
621621 X : array-like of shape = [n_samples, n_features]
622- The input samples.
622+ The input samples. Supports both dense and sparse input.
623623
624624 Returns
625625 -------
@@ -791,7 +791,7 @@ def predict(self, X):
791791 Parameters
792792 ----------
793793 X : array-like of shape = [n_samples, n_features]
794- The input samples.
794+ The input samples. Supports both dense and sparse input.
795795
796796 Returns
797797 -------
0 commit comments