Skip to content

Commit 0f0fae6

Browse files
committed
Resize Project 12 eqns
1 parent 9fe6cd6 commit 0f0fae6

File tree

1 file changed

+24
-24
lines changed

1 file changed

+24
-24
lines changed

Project#12/README.md

+24-24
Original file line numberDiff line numberDiff line change
@@ -18,27 +18,27 @@ The fundamental idea behind CIS is the representation of the excited-state wave
1818
functions as linear combinations of singly excited determinants relative to the
1919
Hartree-Fock reference wave function, *viz.*
2020

21-
<img src="./figures/singly-excited-determinant.png" height="60">
21+
<img src="./figures/singly-excited-determinant.png" height="50">
2222

2323
where *m* identifies the various excited states, and we will use *i* and *j*
2424
(*a* and *b*) to denote occupied (unoccupied) spin-orbitals. Inserting this
2525
into the Schr<html>&ouml;</html>dinger equation and left-projecting onto a
2626
particular singly excited determinant gives
2727

28-
<img src="./figures/excited-det-schrod-eqn.png" height="60">
28+
<img src="./figures/excited-det-schrod-eqn.png" height="50">
2929

3030
If we recognize that we have one of these equations for every combination of
3131
*i* and *a* spin-orbitals, then this equation may be viewed as a matrix
3232
eigenvalue problem:
3333

34-
<img src="./figures/matrix-eigenvalue-problem.png" height="60">
34+
<img src="./figures/matrix-eigenvalue-problem.png" height="30">
3535

3636
To solve this equation, we need an expression for the matrix elements in terms
3737
of things we already know, i.e. Fock matrix elements and two-electron
3838
integrals. This can be done using either algebraic or diagrammatic techniques
3939
to obtain (in the spin-orbital notation of previous projects):
4040

41-
<img src="./figures/matrix-elements.png" height="60">
41+
<img src="./figures/matrix-elements.png" height="30">
4242

4343
Our task is then relatively simple: Build the Hamiltonian matrix (expressed in
4444
the basis of all singly excited determinants) using the above expression and
@@ -72,7 +72,7 @@ from a simple two-electron/two-orbital example (such as the *1s 2s* excited
7272
state configuration of the He atom). One can easily show that the four
7373
possible determinants arising from this configuration,
7474

75-
<img src="./figures/four-possible-determinants.png" height="60">
75+
<img src="./figures/four-possible-determinants.png" height="50">
7676

7777
are components of one singlet and one triplet in the following combinations:
7878

@@ -92,7 +92,7 @@ expression and the equation for the CIS Hamiltonian matrix elements in the
9292
previous section, we may write a spin-factored equation for the
9393
<html>&alpha;</html> coefficients as
9494

95-
<img src="./figures/pin-factored-eqn.png" height="60">
95+
<img src="./figures/spin-factored-eqn.png" height="30">
9696

9797
Note that the mix-spin cases (where *j=*<html>&alpha;</html> and
9898
*b=*<html>&beta;</html> or *vice versa*) do not contribute since the Fock
@@ -101,11 +101,11 @@ carry out spin integration on the integrals in the above expression and assume
101101
that the <html>&alpha;</html> and <html>&beta;</html> CI coefficients are
102102
identical for the same spatial orbitals, i.e.,
103103

104-
<img src="./figures/identical-ci-coeff.png" height="60">
104+
<img src="./figures/identical-ci-coeff.png" height="30">
105105

106106
we obtain the <b><i>spatial orbital</i></b> expression
107107

108-
<img src="./figures/spatial-orbital-expression.png" height="60">
108+
<img src="./figures/spatial-orbital-expression.png" height="50">
109109

110110
The part in brackets above is an expression for the spatial-orbital CIS
111111
Hamiltonian, spin-adapted for singlet excited states, and diagonalization of
@@ -117,11 +117,11 @@ spin-orbital matrix earlier.
117117
How about the triplets? We use exactly the same spin-factorization, but
118118
instead require
119119

120-
<img src="./figures/inverse-ci-coeff.png" height="60">
120+
<img src="./figures/inverse-ci-coeff.png" height="30">
121121

122122
This yields a slightly simpler Hamiltonian:
123123

124-
<img src="./figures/simpler-hamiltonian.png" height="60">
124+
<img src="./figures/simpler-hamiltonian.png" height="50">
125125

126126
which, upon diagonalization, will yield only the triplet eigenvalues (but each only occurring once) from your earlier diagonalziation.
127127

@@ -148,16 +148,16 @@ TDHF/RPA wave function expansion in terms of orbital rotations instead of
148148
Slater determinants, but that's a discussion for another day.) The TDHF/RPA
149149
eigenvalue equations take the form
150150

151-
<img src="./figures/tdhf-eqn.png" height="60">
151+
<img src="./figures/tdhf-eqn.png" height="50">
152152

153153
The definition of the ***A*** matrix is just the CIS matrix itself, *viz.*
154154

155-
<img src="./figures/A-matrix.png" height="60">
155+
<img src="./figures/A-matrix.png" height="30">
156156

157157
while **X** and **Y** are the parameters of single excitations and
158158
de-excitations, respectively, and the ***B*** matrix is simply
159159

160-
<img src="./figures/B-matrix.png" height="60">
160+
<img src="./figures/B-matrix.png" height="30">
161161

162162
Thus, the row/column dimension of the TDHF/RPA Hamiltonian is twice that of the
163163
CIS Hamiltonian, and the matrix is non-symmetric (so you must be careful about
@@ -174,28 +174,28 @@ Hamiltonian storage cost), one can rearrange the eigenvalue equations. First
174174
write eigenvalue equation two separate equations, each in terms of the
175175
submatrices **A** and **B**:
176176

177-
<img src="./figures/smarter-tdhf-1.png" height="60">
177+
<img src="./figures/smarter-tdhf-1.png" height="30">
178178

179179
and
180180

181-
<img src="./figures/smarter-tdhf-2.png" height="60">
181+
<img src="./figures/smarter-tdhf-2.png" height="30">
182182

183183
Now take +/- combinations of these equations to obtain
184184

185-
<img src="./figures/smarter-tdhf-3.png" height="60">
185+
<img src="./figures/smarter-tdhf-3.png" height="30">
186186

187187
and
188188

189-
<img src="./figures/smarter-tdhf-4.png" height="60">
189+
<img src="./figures/smarter-tdhf-4.png" height="30">
190190

191191
Solve for ***(X+Y)*** in the second equation:
192192

193-
<img src="./figures/smarter-tdhf-5.png" height="60">
193+
<img src="./figures/smarter-tdhf-5.png" height="30">
194194

195195
Insert this result into the first equation, rearrange a bit, and finally
196196
obtain:
197197

198-
<img src="./figures/smarter-tdhf-6.png" height="60">
198+
<img src="./figures/smarter-tdhf-6.png" height="30">
199199

200200
This is an eigenvalue equation of the same dimension as the CIS eigenvalue
201201
equation (number of occupied orbitals times number of unoccupied orbitals),
@@ -208,12 +208,12 @@ approach, for all four test cases below.
208208

209209
## Test Cases
210210
The input structures, integrals, etc. for these examples may be found in the
211-
[input directory](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/input).
211+
[input directory](./input).
212212

213213
| Test Case | CIS | RPA (Method 1) | RPA (Method 2) |
214214
|-----------|-----|----------------|----------------|
215-
| STO-3G Water | [output](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/output/h2o/STO-3G/output_cis.txt) | [output](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/output/h2o/STO-3G/output_rpa1.txt) | [output](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/output/h2o/STO-3G/output_rpa2.txt) |
216-
| DZ Water | [output](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/output/h2o/DZ/output_cis.txt) | [output](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/output/h2o/DZ/output_rpa1.txt) | [output](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/output/h2o/DZ/output_rpa2.txt) |
217-
| DZP Water | [output](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/output/h2o/DZP/output_cis.txt) | [output](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/output/h2o/DZP/output_rpa1.txt) | [output](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/output/h2o/DZP/output_rpa2.txt) |
218-
| STO-3G Methane | [output](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/output/ch4/STO-3G/output_cis.txt) | [output](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/output/ch4/STO-3G/output_rpa1.txt) | [output](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/output/ch4/STO-3G/output_rpa2.txt) |
215+
| STO-3G Water | [output](./output/h2o/STO-3G/output_cis.txt) | [output](./output/h2o/STO-3G/output_rpa1.txt) | [output](./output/h2o/STO-3G/output_rpa2.txt) |
216+
| DZ Water | [output](./output/h2o/DZ/output_cis.txt) | [output](./output/h2o/DZ/output_rpa1.txt) | [output](./output/h2o/DZ/output_rpa2.txt) |
217+
| DZP Water | [output](./output/h2o/DZP/output_cis.txt) | [output](./output/h2o/DZP/output_rpa1.txt) | [output](./output/h2o/DZP/output_rpa2.txt) |
218+
| STO-3G Methane | [output](./output/ch4/STO-3G/output_cis.txt) | [output](./output/ch4/STO-3G/output_rpa1.txt) | [output](./output/ch4/STO-3G/output_rpa2.txt) |
219219

0 commit comments

Comments
 (0)