@@ -18,27 +18,27 @@ The fundamental idea behind CIS is the representation of the excited-state wave
18
18
functions as linear combinations of singly excited determinants relative to the
19
19
Hartree-Fock reference wave function, * viz.*
20
20
21
- <img src =" ./figures/singly-excited-determinant.png " height =" 60 " >
21
+ <img src =" ./figures/singly-excited-determinant.png " height =" 50 " >
22
22
23
23
where * m* identifies the various excited states, and we will use * i* and * j*
24
24
(* a* and * b* ) to denote occupied (unoccupied) spin-orbitals. Inserting this
25
25
into the Schr<html >ö ; </html >dinger equation and left-projecting onto a
26
26
particular singly excited determinant gives
27
27
28
- <img src =" ./figures/excited-det-schrod-eqn.png " height =" 60 " >
28
+ <img src =" ./figures/excited-det-schrod-eqn.png " height =" 50 " >
29
29
30
30
If we recognize that we have one of these equations for every combination of
31
31
* i* and * a* spin-orbitals, then this equation may be viewed as a matrix
32
32
eigenvalue problem:
33
33
34
- <img src =" ./figures/matrix-eigenvalue-problem.png " height =" 60 " >
34
+ <img src =" ./figures/matrix-eigenvalue-problem.png " height =" 30 " >
35
35
36
36
To solve this equation, we need an expression for the matrix elements in terms
37
37
of things we already know, i.e. Fock matrix elements and two-electron
38
38
integrals. This can be done using either algebraic or diagrammatic techniques
39
39
to obtain (in the spin-orbital notation of previous projects):
40
40
41
- <img src =" ./figures/matrix-elements.png " height =" 60 " >
41
+ <img src =" ./figures/matrix-elements.png " height =" 30 " >
42
42
43
43
Our task is then relatively simple: Build the Hamiltonian matrix (expressed in
44
44
the basis of all singly excited determinants) using the above expression and
@@ -72,7 +72,7 @@ from a simple two-electron/two-orbital example (such as the *1s 2s* excited
72
72
state configuration of the He atom). One can easily show that the four
73
73
possible determinants arising from this configuration,
74
74
75
- <img src =" ./figures/four-possible-determinants.png " height =" 60 " >
75
+ <img src =" ./figures/four-possible-determinants.png " height =" 50 " >
76
76
77
77
are components of one singlet and one triplet in the following combinations:
78
78
@@ -92,7 +92,7 @@ expression and the equation for the CIS Hamiltonian matrix elements in the
92
92
previous section, we may write a spin-factored equation for the
93
93
<html >&alpha ; </html > coefficients as
94
94
95
- <img src =" ./figures/pin -factored-eqn.png " height =" 60 " >
95
+ <img src =" ./figures/spin -factored-eqn.png " height =" 30 " >
96
96
97
97
Note that the mix-spin cases (where * j=* <html >&alpha ; </html > and
98
98
* b=* <html >&beta ; </html > or * vice versa* ) do not contribute since the Fock
@@ -101,11 +101,11 @@ carry out spin integration on the integrals in the above expression and assume
101
101
that the <html >&alpha ; </html > and <html >&beta ; </html > CI coefficients are
102
102
identical for the same spatial orbitals, i.e.,
103
103
104
- <img src =" ./figures/identical-ci-coeff.png " height =" 60 " >
104
+ <img src =" ./figures/identical-ci-coeff.png " height =" 30 " >
105
105
106
106
we obtain the <b ><i >spatial orbital</i ></b > expression
107
107
108
- <img src =" ./figures/spatial-orbital-expression.png " height =" 60 " >
108
+ <img src =" ./figures/spatial-orbital-expression.png " height =" 50 " >
109
109
110
110
The part in brackets above is an expression for the spatial-orbital CIS
111
111
Hamiltonian, spin-adapted for singlet excited states, and diagonalization of
@@ -117,11 +117,11 @@ spin-orbital matrix earlier.
117
117
How about the triplets? We use exactly the same spin-factorization, but
118
118
instead require
119
119
120
- <img src =" ./figures/inverse-ci-coeff.png " height =" 60 " >
120
+ <img src =" ./figures/inverse-ci-coeff.png " height =" 30 " >
121
121
122
122
This yields a slightly simpler Hamiltonian:
123
123
124
- <img src =" ./figures/simpler-hamiltonian.png " height =" 60 " >
124
+ <img src =" ./figures/simpler-hamiltonian.png " height =" 50 " >
125
125
126
126
which, upon diagonalization, will yield only the triplet eigenvalues (but each only occurring once) from your earlier diagonalziation.
127
127
@@ -148,16 +148,16 @@ TDHF/RPA wave function expansion in terms of orbital rotations instead of
148
148
Slater determinants, but that's a discussion for another day.) The TDHF/RPA
149
149
eigenvalue equations take the form
150
150
151
- <img src =" ./figures/tdhf-eqn.png " height =" 60 " >
151
+ <img src =" ./figures/tdhf-eqn.png " height =" 50 " >
152
152
153
153
The definition of the *** A*** matrix is just the CIS matrix itself, * viz.*
154
154
155
- <img src =" ./figures/A-matrix.png " height =" 60 " >
155
+ <img src =" ./figures/A-matrix.png " height =" 30 " >
156
156
157
157
while ** X** and ** Y** are the parameters of single excitations and
158
158
de-excitations, respectively, and the *** B*** matrix is simply
159
159
160
- <img src =" ./figures/B-matrix.png " height =" 60 " >
160
+ <img src =" ./figures/B-matrix.png " height =" 30 " >
161
161
162
162
Thus, the row/column dimension of the TDHF/RPA Hamiltonian is twice that of the
163
163
CIS Hamiltonian, and the matrix is non-symmetric (so you must be careful about
@@ -174,28 +174,28 @@ Hamiltonian storage cost), one can rearrange the eigenvalue equations. First
174
174
write eigenvalue equation two separate equations, each in terms of the
175
175
submatrices ** A** and ** B** :
176
176
177
- <img src =" ./figures/smarter-tdhf-1.png " height =" 60 " >
177
+ <img src =" ./figures/smarter-tdhf-1.png " height =" 30 " >
178
178
179
179
and
180
180
181
- <img src =" ./figures/smarter-tdhf-2.png " height =" 60 " >
181
+ <img src =" ./figures/smarter-tdhf-2.png " height =" 30 " >
182
182
183
183
Now take +/- combinations of these equations to obtain
184
184
185
- <img src =" ./figures/smarter-tdhf-3.png " height =" 60 " >
185
+ <img src =" ./figures/smarter-tdhf-3.png " height =" 30 " >
186
186
187
187
and
188
188
189
- <img src =" ./figures/smarter-tdhf-4.png " height =" 60 " >
189
+ <img src =" ./figures/smarter-tdhf-4.png " height =" 30 " >
190
190
191
191
Solve for *** (X+Y)*** in the second equation:
192
192
193
- <img src =" ./figures/smarter-tdhf-5.png " height =" 60 " >
193
+ <img src =" ./figures/smarter-tdhf-5.png " height =" 30 " >
194
194
195
195
Insert this result into the first equation, rearrange a bit, and finally
196
196
obtain:
197
197
198
- <img src =" ./figures/smarter-tdhf-6.png " height =" 60 " >
198
+ <img src =" ./figures/smarter-tdhf-6.png " height =" 30 " >
199
199
200
200
This is an eigenvalue equation of the same dimension as the CIS eigenvalue
201
201
equation (number of occupied orbitals times number of unoccupied orbitals),
@@ -208,12 +208,12 @@ approach, for all four test cases below.
208
208
209
209
## Test Cases
210
210
The input structures, integrals, etc. for these examples may be found in the
211
- [ input directory] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312 /input) .
211
+ [ input directory] ( . /input) .
212
212
213
213
| Test Case | CIS | RPA (Method 1) | RPA (Method 2) |
214
214
| -----------| -----| ----------------| ----------------|
215
- | STO-3G Water | [ output] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/ output/h2o/STO-3G/output_cis.txt) | [ output] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/ output/h2o/STO-3G/output_rpa1.txt) | [ output] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312 /output/h2o/STO-3G/output_rpa2.txt) |
216
- | DZ Water | [ output] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/ output/h2o/DZ/output_cis.txt) | [ output] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/ output/h2o/DZ/output_rpa1.txt) | [ output] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312 /output/h2o/DZ/output_rpa2.txt) |
217
- | DZP Water | [ output] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/ output/h2o/DZP/output_cis.txt) | [ output] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/ output/h2o/DZP/output_rpa1.txt) | [ output] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312 /output/h2o/DZP/output_rpa2.txt) |
218
- | STO-3G Methane | [ output] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/ output/ch4/STO-3G/output_cis.txt) | [ output] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312/ output/ch4/STO-3G/output_rpa1.txt) | [ output] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2312 /output/ch4/STO-3G/output_rpa2.txt) |
215
+ | STO-3G Water | [ output] ( ./ output/h2o/STO-3G/output_cis.txt) | [ output] ( ./ output/h2o/STO-3G/output_rpa1.txt) | [ output] ( . /output/h2o/STO-3G/output_rpa2.txt) |
216
+ | DZ Water | [ output] ( ./ output/h2o/DZ/output_cis.txt) | [ output] ( ./ output/h2o/DZ/output_rpa1.txt) | [ output] ( . /output/h2o/DZ/output_rpa2.txt) |
217
+ | DZP Water | [ output] ( ./ output/h2o/DZP/output_cis.txt) | [ output] ( ./ output/h2o/DZP/output_rpa1.txt) | [ output] ( . /output/h2o/DZP/output_rpa2.txt) |
218
+ | STO-3G Methane | [ output] ( ./ output/ch4/STO-3G/output_cis.txt) | [ output] ( ./ output/ch4/STO-3G/output_rpa1.txt) | [ output] ( . /output/ch4/STO-3G/output_rpa2.txt) |
219
219
0 commit comments