Skip to content

Commit f494c24

Browse files
committed
add 线性回归、逻辑回归、交叉熵、反向传播和softmax等推导
1 parent f61a417 commit f494c24

File tree

1 file changed

+4
-0
lines changed

1 file changed

+4
-0
lines changed

README.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -354,6 +354,10 @@
354354
* [23.谱归一化(Spectral Normalization)的理解](https://blog.csdn.net/StreamRock/article/details/83590347)[常见向量范数和矩阵范数](https://blog.csdn.net/left_la/article/details/9159949)[谱范数正则(Spectral Norm Regularization)的理解](https://blog.csdn.net/StreamRock/article/details/83539937)
355355
* [24.L1正则化与L2正则化](https://zhuanlan.zhihu.com/p/35356992)
356356
* [25.为什么选用交叉熵而不是MSE](https://zhuanlan.zhihu.com/p/61944055)
357+
* [机器学习笔记四:线性回归回顾与logistic回归](https://blog.csdn.net/xierhacker/article/details/53316138)
358+
* [反向传播算法(过程及公式推导)](https://blog.csdn.net/u014313009/article/details/51039334)
359+
* [交叉熵代价函数(作用及公式推导)](https://blog.csdn.net/u014313009/article/details/51043064)
360+
* **Softmax**[详解softmax函数以及相关求导过程](https://zhuanlan.zhihu.com/p/25723112) && [softmax的log似然代价函数(公式求导)](https://blog.csdn.net/u014313009/article/details/51045303)
357361

358362
## 四. 炼丹术士那些事
359363

0 commit comments

Comments
 (0)