Skip to content

Commit 3ab45e4

Browse files
committed
update
1 parent e633a93 commit 3ab45e4

File tree

8 files changed

+212
-332
lines changed

8 files changed

+212
-332
lines changed

doc/pub/week7/html/week7-bs.html

Lines changed: 8 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -441,19 +441,19 @@ <h2 id="pauli-x-reminder" class="anchor">Pauli \( X \) reminder </h2>
441441

442442
<p>with eigenvalues \( 1 \) in both cases. The latter two equations tell us
443443
that the computational basis we have chosen, and in which we will
444-
prepare our states, is not an eigenbasis of the \( \sigma_x \) matrix.
444+
prepare our states, is not an eigenbasis of the \( \boldsymbol{X} \) matrix.
445445
</p>
446446

447447
<!-- !split -->
448448
<h2 id="rewriting-the-pauli-x-matrix" class="anchor">Rewriting the Pauli \( X \) matrix </h2>
449449

450450
<p>We rewrite the Pauli \( X \) matrix in terms of a Pauli
451-
\( Z \) matrixcusing the Hadamard matrix
451+
\( Z \) matrix using the Hadamard matrix
452452
twice, that is
453453
</p>
454454

455455
$$
456-
\boldsymbol{X}=\boldsymbol{\sigma}_x=\boldsymbol{H}\boldsymbol{Z}\boldsymbol{H}.
456+
\boldsymbol{X}=\boldsymbol{H}\boldsymbol{Z}\boldsymbol{H}.
457457
$$
458458

459459

@@ -463,7 +463,7 @@ <h2 id="the-pauli-y-matrix" class="anchor">The Pauli \( Y \) matrix </h2>
463463
<p>The Pauli \( Y \) matrix can be written as</p>
464464

465465
$$
466-
\boldsymbol{Y}=\boldsymbol{\sigma}_y=\boldsymbol{H}\boldsymbol{S}^{\dagger}\boldsymbol{Z}\boldsymbol{H}\boldsymbol{S},
466+
\boldsymbol{Y}=\boldsymbol{H}\boldsymbol{S}^{\dagger}\boldsymbol{Z}\boldsymbol{H}\boldsymbol{S},
467467
$$
468468

469469
<p>where \( S \) is the phase matrix</p>
@@ -635,35 +635,18 @@ <h2 id="preparing-the-states" class="anchor">Preparing the states </h2>
635635
gates on the \( \left| 0 \right\rangle \) initial state
636636
</p>
637637
$$
638-
R_y(t_2)R_x(t_1) \left| 0 \right\rangle = \left| \psi\right\rangle.
638+
R_y(\phi)R_x(\theta) \left| 0 \right\rangle = \left| \psi\right\rangle.
639639
$$
640640

641-
<p>The rotation \( R_x(t_1) \)
641+
<p>The rotation \( R_x(\theta) \)
642642
corresponds to the rotation in the Bloch
643-
sphere around the \( x \)-axis and \( R_y(t_2) \) the rotation around the \( y \)-axis.
643+
sphere around the \( x \)-axis and \( R_y(\phi) \) the rotation around the \( y \)-axis.
644644
</p>
645645

646646
<!-- !split -->
647647
<h2 id="rotations-used" class="anchor">Rotations used </h2>
648648

649-
<p>With these two rotations, one can have access to any point in
650-
the Bloch sphere. Here we show the matrix forms of \( R_x(t_1) \) and
651-
\( R_y(t_2) \) gates:
652-
</p>
653-
654-
$$
655-
R_x(t_1) = \begin{pmatrix}
656-
cos(\frac{t_1}{2}) & -i \cdot sin(\frac{t_1}{2})\\
657-
-i \cdot sin(\frac{t_1}{2}) & cos(\frac{t_1}{2})
658-
\end{pmatrix},
659-
\qquad
660-
R_y(t_2) = \begin{pmatrix}
661-
cos(\frac{t_2}{2}) & -sin(\frac{t_2}{2})\\
662-
sin(\frac{t_2}{2}) & cos(\frac{t_2}{2})
663-
\end{pmatrix}.
664-
$$
665-
666-
<p>These two gates with there parameters (\( t_1 \) and \( t_2 \)) will generate
649+
<p>These two gates with there parameters (\( \theta \) and \( \phi \)) will generate
667650
for us the trial (ansatz) wavefunctions. The two parameters will be in
668651
control of the Classical Computer and its optimization model.
669652
</p>

doc/pub/week7/html/week7-reveal.html

Lines changed: 8 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -355,21 +355,21 @@ <h2 id="pauli-x-reminder">Pauli \( X \) reminder </h2>
355355

356356
<p>with eigenvalues \( 1 \) in both cases. The latter two equations tell us
357357
that the computational basis we have chosen, and in which we will
358-
prepare our states, is not an eigenbasis of the \( \sigma_x \) matrix.
358+
prepare our states, is not an eigenbasis of the \( \boldsymbol{X} \) matrix.
359359
</p>
360360
</section>
361361

362362
<section>
363363
<h2 id="rewriting-the-pauli-x-matrix">Rewriting the Pauli \( X \) matrix </h2>
364364

365365
<p>We rewrite the Pauli \( X \) matrix in terms of a Pauli
366-
\( Z \) matrixcusing the Hadamard matrix
366+
\( Z \) matrix using the Hadamard matrix
367367
twice, that is
368368
</p>
369369

370370
<p>&nbsp;<br>
371371
$$
372-
\boldsymbol{X}=\boldsymbol{\sigma}_x=\boldsymbol{H}\boldsymbol{Z}\boldsymbol{H}.
372+
\boldsymbol{X}=\boldsymbol{H}\boldsymbol{Z}\boldsymbol{H}.
373373
$$
374374
<p>&nbsp;<br>
375375
</section>
@@ -381,7 +381,7 @@ <h2 id="the-pauli-y-matrix">The Pauli \( Y \) matrix </h2>
381381

382382
<p>&nbsp;<br>
383383
$$
384-
\boldsymbol{Y}=\boldsymbol{\sigma}_y=\boldsymbol{H}\boldsymbol{S}^{\dagger}\boldsymbol{Z}\boldsymbol{H}\boldsymbol{S},
384+
\boldsymbol{Y}=\boldsymbol{H}\boldsymbol{S}^{\dagger}\boldsymbol{Z}\boldsymbol{H}\boldsymbol{S},
385385
$$
386386
<p>&nbsp;<br>
387387

@@ -576,39 +576,20 @@ <h2 id="preparing-the-states">Preparing the states </h2>
576576
</p>
577577
<p>&nbsp;<br>
578578
$$
579-
R_y(t_2)R_x(t_1) \left| 0 \right\rangle = \left| \psi\right\rangle.
579+
R_y(\phi)R_x(\theta) \left| 0 \right\rangle = \left| \psi\right\rangle.
580580
$$
581581
<p>&nbsp;<br>
582582

583-
<p>The rotation \( R_x(t_1) \)
583+
<p>The rotation \( R_x(\theta) \)
584584
corresponds to the rotation in the Bloch
585-
sphere around the \( x \)-axis and \( R_y(t_2) \) the rotation around the \( y \)-axis.
585+
sphere around the \( x \)-axis and \( R_y(\phi) \) the rotation around the \( y \)-axis.
586586
</p>
587587
</section>
588588

589589
<section>
590590
<h2 id="rotations-used">Rotations used </h2>
591591

592-
<p>With these two rotations, one can have access to any point in
593-
the Bloch sphere. Here we show the matrix forms of \( R_x(t_1) \) and
594-
\( R_y(t_2) \) gates:
595-
</p>
596-
597-
<p>&nbsp;<br>
598-
$$
599-
R_x(t_1) = \begin{pmatrix}
600-
cos(\frac{t_1}{2}) & -i \cdot sin(\frac{t_1}{2})\\
601-
-i \cdot sin(\frac{t_1}{2}) & cos(\frac{t_1}{2})
602-
\end{pmatrix},
603-
\qquad
604-
R_y(t_2) = \begin{pmatrix}
605-
cos(\frac{t_2}{2}) & -sin(\frac{t_2}{2})\\
606-
sin(\frac{t_2}{2}) & cos(\frac{t_2}{2})
607-
\end{pmatrix}.
608-
$$
609-
<p>&nbsp;<br>
610-
611-
<p>These two gates with there parameters (\( t_1 \) and \( t_2 \)) will generate
592+
<p>These two gates with there parameters (\( \theta \) and \( \phi \)) will generate
612593
for us the trial (ansatz) wavefunctions. The two parameters will be in
613594
control of the Classical Computer and its optimization model.
614595
</p>

doc/pub/week7/html/week7-solarized.html

Lines changed: 8 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -376,19 +376,19 @@ <h2 id="pauli-x-reminder">Pauli \( X \) reminder </h2>
376376

377377
<p>with eigenvalues \( 1 \) in both cases. The latter two equations tell us
378378
that the computational basis we have chosen, and in which we will
379-
prepare our states, is not an eigenbasis of the \( \sigma_x \) matrix.
379+
prepare our states, is not an eigenbasis of the \( \boldsymbol{X} \) matrix.
380380
</p>
381381

382382
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
383383
<h2 id="rewriting-the-pauli-x-matrix">Rewriting the Pauli \( X \) matrix </h2>
384384

385385
<p>We rewrite the Pauli \( X \) matrix in terms of a Pauli
386-
\( Z \) matrixcusing the Hadamard matrix
386+
\( Z \) matrix using the Hadamard matrix
387387
twice, that is
388388
</p>
389389

390390
$$
391-
\boldsymbol{X}=\boldsymbol{\sigma}_x=\boldsymbol{H}\boldsymbol{Z}\boldsymbol{H}.
391+
\boldsymbol{X}=\boldsymbol{H}\boldsymbol{Z}\boldsymbol{H}.
392392
$$
393393

394394

@@ -398,7 +398,7 @@ <h2 id="the-pauli-y-matrix">The Pauli \( Y \) matrix </h2>
398398
<p>The Pauli \( Y \) matrix can be written as</p>
399399

400400
$$
401-
\boldsymbol{Y}=\boldsymbol{\sigma}_y=\boldsymbol{H}\boldsymbol{S}^{\dagger}\boldsymbol{Z}\boldsymbol{H}\boldsymbol{S},
401+
\boldsymbol{Y}=\boldsymbol{H}\boldsymbol{S}^{\dagger}\boldsymbol{Z}\boldsymbol{H}\boldsymbol{S},
402402
$$
403403

404404
<p>where \( S \) is the phase matrix</p>
@@ -570,35 +570,18 @@ <h2 id="preparing-the-states">Preparing the states </h2>
570570
gates on the \( \left| 0 \right\rangle \) initial state
571571
</p>
572572
$$
573-
R_y(t_2)R_x(t_1) \left| 0 \right\rangle = \left| \psi\right\rangle.
573+
R_y(\phi)R_x(\theta) \left| 0 \right\rangle = \left| \psi\right\rangle.
574574
$$
575575

576-
<p>The rotation \( R_x(t_1) \)
576+
<p>The rotation \( R_x(\theta) \)
577577
corresponds to the rotation in the Bloch
578-
sphere around the \( x \)-axis and \( R_y(t_2) \) the rotation around the \( y \)-axis.
578+
sphere around the \( x \)-axis and \( R_y(\phi) \) the rotation around the \( y \)-axis.
579579
</p>
580580

581581
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
582582
<h2 id="rotations-used">Rotations used </h2>
583583

584-
<p>With these two rotations, one can have access to any point in
585-
the Bloch sphere. Here we show the matrix forms of \( R_x(t_1) \) and
586-
\( R_y(t_2) \) gates:
587-
</p>
588-
589-
$$
590-
R_x(t_1) = \begin{pmatrix}
591-
cos(\frac{t_1}{2}) & -i \cdot sin(\frac{t_1}{2})\\
592-
-i \cdot sin(\frac{t_1}{2}) & cos(\frac{t_1}{2})
593-
\end{pmatrix},
594-
\qquad
595-
R_y(t_2) = \begin{pmatrix}
596-
cos(\frac{t_2}{2}) & -sin(\frac{t_2}{2})\\
597-
sin(\frac{t_2}{2}) & cos(\frac{t_2}{2})
598-
\end{pmatrix}.
599-
$$
600-
601-
<p>These two gates with there parameters (\( t_1 \) and \( t_2 \)) will generate
584+
<p>These two gates with there parameters (\( \theta \) and \( \phi \)) will generate
602585
for us the trial (ansatz) wavefunctions. The two parameters will be in
603586
control of the Classical Computer and its optimization model.
604587
</p>

doc/pub/week7/html/week7.html

Lines changed: 8 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -453,19 +453,19 @@ <h2 id="pauli-x-reminder">Pauli \( X \) reminder </h2>
453453

454454
<p>with eigenvalues \( 1 \) in both cases. The latter two equations tell us
455455
that the computational basis we have chosen, and in which we will
456-
prepare our states, is not an eigenbasis of the \( \sigma_x \) matrix.
456+
prepare our states, is not an eigenbasis of the \( \boldsymbol{X} \) matrix.
457457
</p>
458458

459459
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
460460
<h2 id="rewriting-the-pauli-x-matrix">Rewriting the Pauli \( X \) matrix </h2>
461461

462462
<p>We rewrite the Pauli \( X \) matrix in terms of a Pauli
463-
\( Z \) matrixcusing the Hadamard matrix
463+
\( Z \) matrix using the Hadamard matrix
464464
twice, that is
465465
</p>
466466

467467
$$
468-
\boldsymbol{X}=\boldsymbol{\sigma}_x=\boldsymbol{H}\boldsymbol{Z}\boldsymbol{H}.
468+
\boldsymbol{X}=\boldsymbol{H}\boldsymbol{Z}\boldsymbol{H}.
469469
$$
470470

471471

@@ -475,7 +475,7 @@ <h2 id="the-pauli-y-matrix">The Pauli \( Y \) matrix </h2>
475475
<p>The Pauli \( Y \) matrix can be written as</p>
476476

477477
$$
478-
\boldsymbol{Y}=\boldsymbol{\sigma}_y=\boldsymbol{H}\boldsymbol{S}^{\dagger}\boldsymbol{Z}\boldsymbol{H}\boldsymbol{S},
478+
\boldsymbol{Y}=\boldsymbol{H}\boldsymbol{S}^{\dagger}\boldsymbol{Z}\boldsymbol{H}\boldsymbol{S},
479479
$$
480480

481481
<p>where \( S \) is the phase matrix</p>
@@ -647,35 +647,18 @@ <h2 id="preparing-the-states">Preparing the states </h2>
647647
gates on the \( \left| 0 \right\rangle \) initial state
648648
</p>
649649
$$
650-
R_y(t_2)R_x(t_1) \left| 0 \right\rangle = \left| \psi\right\rangle.
650+
R_y(\phi)R_x(\theta) \left| 0 \right\rangle = \left| \psi\right\rangle.
651651
$$
652652

653-
<p>The rotation \( R_x(t_1) \)
653+
<p>The rotation \( R_x(\theta) \)
654654
corresponds to the rotation in the Bloch
655-
sphere around the \( x \)-axis and \( R_y(t_2) \) the rotation around the \( y \)-axis.
655+
sphere around the \( x \)-axis and \( R_y(\phi) \) the rotation around the \( y \)-axis.
656656
</p>
657657

658658
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
659659
<h2 id="rotations-used">Rotations used </h2>
660660

661-
<p>With these two rotations, one can have access to any point in
662-
the Bloch sphere. Here we show the matrix forms of \( R_x(t_1) \) and
663-
\( R_y(t_2) \) gates:
664-
</p>
665-
666-
$$
667-
R_x(t_1) = \begin{pmatrix}
668-
cos(\frac{t_1}{2}) & -i \cdot sin(\frac{t_1}{2})\\
669-
-i \cdot sin(\frac{t_1}{2}) & cos(\frac{t_1}{2})
670-
\end{pmatrix},
671-
\qquad
672-
R_y(t_2) = \begin{pmatrix}
673-
cos(\frac{t_2}{2}) & -sin(\frac{t_2}{2})\\
674-
sin(\frac{t_2}{2}) & cos(\frac{t_2}{2})
675-
\end{pmatrix}.
676-
$$
677-
678-
<p>These two gates with there parameters (\( t_1 \) and \( t_2 \)) will generate
661+
<p>These two gates with there parameters (\( \theta \) and \( \phi \)) will generate
679662
for us the trial (ansatz) wavefunctions. The two parameters will be in
680663
control of the Classical Computer and its optimization model.
681664
</p>
0 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)