@@ -41,47 +41,46 @@ class SelfTrainingClassifier(MetaEstimatorMixin, BaseEstimator):
4141 Invoking the ``fit`` method will fit a clone of the passed estimator,
4242 which will be stored in the ``base_estimator_`` attribute.
4343
44- criterion : {'threshold', 'k_best'}, optional \
45- (default='threshold')
44+ criterion : {'threshold', 'k_best'}, default='threshold'
4645 The selection criterion used to select which labels to add to the
4746 training set. If 'threshold', pseudo-labels with prediction
4847 probabilities above `threshold` are added to the dataset. If 'k_best',
4948 the `k_best` pseudo-labels with highest prediction probabilities are
5049 added to the dataset. When using the 'threshold' criterion, a
5150 :ref:`well calibrated classifier <calibration>` should be used.
5251
53- threshold : float, optional ( default=0.75)
52+ threshold : float, default=0.75
5453 The decision threshold for use with `criterion='threshold'`.
5554 Should be in [0, 1). When using the 'threshold' criterion, a
5655 :ref:`well calibrated classifier <calibration>` should be used.
5756
58- k_best : int, optional ( default=10)
57+ k_best : int, default=10
5958 The amount of samples to add in each iteration. Only used when
6059 `criterion` is k_best'.
6160
62- max_iter : int or `` None``, optional ( default=10)
61+ max_iter : int or None, default=10
6362 Maximum number of iterations allowed. Should be greater than or equal
6463 to 0. If it is ``None``, the classifier will continue to predict labels
6564 until no new pseudo-labels are added, or all unlabeled samples have
6665 been labeled.
6766
68- verbose: bool, ( default=False)
67+ verbose: bool, default=False
6968 Enable verbose output.
7069
7170 Attributes
7271 ----------
7372 base_estimator_ : estimator object
7473 The fitted estimator.
7574
76- classes_ : array or list of array of shape (n_classes,)
75+ classes_ : ndarray or list of ndarray of shape (n_classes,)
7776 Class labels for each output. (Taken from the trained
78- ``base_estimator_``)
77+ ``base_estimator_``).
7978
80- transduction_ : array, shape= (n_samples,)
79+ transduction_ : ndarray of shape (n_samples,)
8180 The labels used for the final fit of the classifier, including
8281 pseudo-labels added during fit.
8382
84- labeled_iter_ : array, shape= (n_samples,)
83+ labeled_iter_ : ndarray of shape (n_samples,)
8584 The iteration in which each sample was labeled. When a sample has
8685 iteration 0, the sample was already labeled in the original dataset.
8786 When a sample has iteration -1, the sample was not labeled in any
@@ -144,17 +143,17 @@ def fit(self, X, y):
144143
145144 Parameters
146145 ----------
147- X : array-like, shape = (n_samples, n_features)
148- array representing the data
146+ X : { array-like, sparse matrix} of shape (n_samples, n_features)
147+ Array representing the data.
149148
150- y : array-like, shape = (n_samples,)
151- array representing the labels. Unlabeled samples should have the
149+ y : { array-like, sparse matrix} of shape (n_samples,)
150+ Array representing the labels. Unlabeled samples should have the
152151 label -1.
153152
154153 Returns
155154 -------
156155 self : object
157- returns an instance of self.
156+ Returns an instance of self.
158157 """
159158 # we need row slicing support for sparce matrices
160159 X , y = self ._validate_data (X , y , accept_sparse = [
@@ -263,13 +262,13 @@ def predict(self, X):
263262
264263 Parameters
265264 ----------
266- X : array-like, shape= (n_samples, n_features)
267- array representing the data
265+ X : { array-like, sparse matrix} of shape (n_samples, n_features)
266+ Array representing the data.
268267
269268 Returns
270269 -------
271- y : array-like, shape= (n_samples,)
272- array with predicted labels
270+ y : ndarray of shape (n_samples,)
271+ Array with predicted labels.
273272 """
274273 check_is_fitted (self )
275274 return self .base_estimator_ .predict (X )
@@ -279,30 +278,30 @@ def predict_proba(self, X):
279278
280279 Parameters
281280 ----------
282- X : array-like, shape= (n_samples, n_features)
283- array representing the data
281+ X : { array-like, sparse matrix} of shape (n_samples, n_features)
282+ Array representing the data.
284283
285284 Returns
286285 -------
287- y : array-like, shape= (n_samples, n_features)
288- array with prediction probabilities
286+ y : ndarray of shape (n_samples, n_features)
287+ Array with prediction probabilities.
289288 """
290289 check_is_fitted (self )
291290 return self .base_estimator_ .predict_proba (X )
292291
293292 @if_delegate_has_method (delegate = 'base_estimator' )
294293 def decision_function (self , X ):
295- """Calls decision function of the base_estimator.
294+ """Calls decision function of the ` base_estimator` .
296295
297296 Parameters
298297 ----------
299- X : array-like, shape= (n_samples, n_features)
300- array representing the data
298+ X : { array-like, sparse matrix} of shape (n_samples, n_features)
299+ Array representing the data.
301300
302301 Returns
303302 -------
304- y : array-like, shape= (n_samples, n_features)
305- result of the decision function of the base_estimator
303+ y : ndarray of shape (n_samples, n_features)
304+ Result of the decision function of the ` base_estimator`.
306305 """
307306 check_is_fitted (self )
308307 return self .base_estimator_ .decision_function (X )
@@ -313,33 +312,33 @@ def predict_log_proba(self, X):
313312
314313 Parameters
315314 ----------
316- X : array-like, shape= (n_samples, n_features)
317- array representing the data
315+ X : { array-like, sparse matrix} of shape (n_samples, n_features)
316+ Array representing the data.
318317
319318 Returns
320319 -------
321- y : array-like, shape= (n_samples, n_features)
322- array with log prediction probabilities
320+ y : ndarray of shape (n_samples, n_features)
321+ Array with log prediction probabilities.
323322 """
324323 check_is_fitted (self )
325324 return self .base_estimator_ .predict_log_proba (X )
326325
327326 @if_delegate_has_method (delegate = 'base_estimator' )
328327 def score (self , X , y ):
329- """Calls score on the base_estimator.
328+ """Calls score on the ` base_estimator` .
330329
331330 Parameters
332331 ----------
333- X : array-like, shape= (n_samples, n_features)
334- array representing the data
332+ X : { array-like, sparse matrix} of shape (n_samples, n_features)
333+ Array representing the data.
335334
336- y : array-like, shape= (n_samples,)
337- array representing the labels
335+ y : array-like of shape (n_samples,)
336+ Array representing the labels.
338337
339338 Returns
340339 -------
341340 score : float
342- result of calling score on the base_estimator
341+ Result of calling score on the ` base_estimator`.
343342 """
344343 check_is_fitted (self )
345344 return self .base_estimator_ .score (X , y )
0 commit comments