|
| 1 | +package Kruskal; |
| 2 | + |
| 3 | +import java.util.Comparator; |
| 4 | +import java.util.HashSet; |
| 5 | +import java.util.PriorityQueue; |
| 6 | + |
| 7 | +public class Kruskal { |
| 8 | + |
| 9 | + //Complexity: O(E log V) time, where E is the number of edges in the graph and V is the number of vertices |
| 10 | + |
| 11 | + private static class Edge{ |
| 12 | + private int from; |
| 13 | + private int to; |
| 14 | + private int weight; |
| 15 | + |
| 16 | + public Edge(int from, int to, int weight) { |
| 17 | + this.from = from; |
| 18 | + this.to = to; |
| 19 | + this.weight = weight; |
| 20 | + } |
| 21 | + } |
| 22 | + |
| 23 | + private static void addEdge (HashSet<Edge>[] graph, int from, int to, int weight) { |
| 24 | + graph[from].add(new Edge(from, to, weight)); |
| 25 | + } |
| 26 | + |
| 27 | + public static void main(String[] args) { |
| 28 | + HashSet<Edge>[] graph = new HashSet[7]; |
| 29 | + for (int i = 0; i < graph.length; i++) { |
| 30 | + graph[i] = new HashSet<>(); |
| 31 | + } |
| 32 | + addEdge(graph,0, 1, 2); |
| 33 | + addEdge(graph,0, 2, 3); |
| 34 | + addEdge(graph,0, 3, 3); |
| 35 | + addEdge(graph,1, 2, 4); |
| 36 | + addEdge(graph,2, 3, 5); |
| 37 | + addEdge(graph,1, 4, 3); |
| 38 | + addEdge(graph,2, 4, 1); |
| 39 | + addEdge(graph,3, 5, 7); |
| 40 | + addEdge(graph,4, 5, 8); |
| 41 | + addEdge(graph,5, 6, 9); |
| 42 | + |
| 43 | + System.out.println("Initial Graph: "); |
| 44 | + for (int i = 0; i < graph.length; i++) { |
| 45 | + for (Edge edge: graph[i]) { |
| 46 | + System.out.println(i + " <-- weight " + edge.weight + " --> " + edge.to); |
| 47 | + } |
| 48 | + } |
| 49 | + |
| 50 | + Kruskal k = new Kruskal(); |
| 51 | + HashSet<Edge>[] solGraph = k.kruskal(graph); |
| 52 | + |
| 53 | + System.out.println("\nMinimal Graph: "); |
| 54 | + for (int i = 0; i < solGraph.length; i++) { |
| 55 | + for (Edge edge: solGraph[i]) { |
| 56 | + System.out.println(i + " <-- weight " + edge.weight + " --> " + edge.to); |
| 57 | + } |
| 58 | + } |
| 59 | + } |
| 60 | + |
| 61 | + public HashSet<Edge>[] kruskal (HashSet<Edge>[] graph) { |
| 62 | + int nodes = graph.length; |
| 63 | + int [] captain = new int [nodes]; |
| 64 | + //captain of i, stores the set with all the connected nodes to i |
| 65 | + HashSet<Integer>[] connectedGroups = new HashSet[nodes]; |
| 66 | + HashSet<Edge>[] minGraph = new HashSet[nodes]; |
| 67 | + PriorityQueue<Edge> edges = new PriorityQueue<>((Comparator.comparingInt(edge -> edge.weight))); |
| 68 | + for (int i = 0; i < nodes; i++) { |
| 69 | + minGraph[i] = new HashSet<>(); |
| 70 | + connectedGroups[i] = new HashSet<>(); |
| 71 | + connectedGroups[i].add(i); |
| 72 | + captain[i] = i; |
| 73 | + edges.addAll(graph[i]); |
| 74 | + } |
| 75 | + int connectedElements = 0; |
| 76 | + //as soon as two sets merge all the elements, the algorithm must stop |
| 77 | + while (connectedElements != nodes && !edges.isEmpty()) { |
| 78 | + Edge edge = edges.poll(); |
| 79 | + //This if avoids cycles |
| 80 | + if (!connectedGroups[captain[edge.from]].contains(edge.to) |
| 81 | + && !connectedGroups[captain[edge.to]].contains(edge.from)) { |
| 82 | + //merge sets of the captains of each point connected by the edge |
| 83 | + connectedGroups[captain[edge.from]].addAll(connectedGroups[captain[edge.to]]); |
| 84 | + //update captains of the elements merged |
| 85 | + connectedGroups[captain[edge.from]].forEach(i -> captain[i] = captain[edge.from]); |
| 86 | + //add Edge to minimal graph |
| 87 | + addEdge(minGraph, edge.from, edge.to, edge.weight); |
| 88 | + //count how many elements have been merged |
| 89 | + connectedElements = connectedGroups[captain[edge.from]].size(); |
| 90 | + } |
| 91 | + } |
| 92 | + return minGraph; |
| 93 | + } |
| 94 | +} |
0 commit comments