@@ -636,7 +636,7 @@ class _RidgeGCV(LinearModel):
636636 http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf
637637 """
638638
639- def __init__ (self , alphas = [ 0.1 , 1.0 , 10.0 ] ,
639+ def __init__ (self , alphas = ( 0.1 , 1.0 , 10.0 ) ,
640640 fit_intercept = True , normalize = False ,
641641 scoring = None , copy_X = True ,
642642 gcv_mode = None , store_cv_values = False ):
@@ -816,7 +816,7 @@ def identity_estimator():
816816
817817
818818class _BaseRidgeCV (LinearModel ):
819- def __init__ (self , alphas = np . array ([ 0.1 , 1.0 , 10.0 ] ),
819+ def __init__ (self , alphas = ( 0.1 , 1.0 , 10.0 ),
820820 fit_intercept = True , normalize = False , scoring = None ,
821821 cv = None , gcv_mode = None ,
822822 store_cv_values = False ):
@@ -1026,7 +1026,7 @@ class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV):
10261026 a one-versus-all approach. Concretely, this is implemented by taking
10271027 advantage of the multi-variate response support in Ridge.
10281028 """
1029- def __init__ (self , alphas = np . array ([ 0.1 , 1.0 , 10.0 ] ), fit_intercept = True ,
1029+ def __init__ (self , alphas = ( 0.1 , 1.0 , 10.0 ), fit_intercept = True ,
10301030 normalize = False , scoring = None , cv = None , class_weight = None ):
10311031 super (RidgeClassifierCV , self ).__init__ (
10321032 alphas = alphas , fit_intercept = fit_intercept , normalize = normalize ,
0 commit comments