@@ -61,14 +61,14 @@ def shrunk_covariance(emp_cov, shrinkage=0.1):
6161
6262
6363class ShrunkCovariance (EmpiricalCovariance ):
64- """Covariance estimator with shrinkage
64+ """Covariance estimator with shrinkage.
6565
6666 Read more in the :ref:`User Guide <shrunk_covariance>`.
6767
6868 Parameters
6969 ----------
7070 store_precision : bool, default=True
71- Specify if the estimated precision is stored
71+ Specify if the estimated precision is stored.
7272
7373 assume_centered : bool, default=False
7474 If True, data will not be centered before computation.
@@ -97,6 +97,28 @@ class ShrunkCovariance(EmpiricalCovariance):
9797
9898 .. versionadded:: 0.24
9999
100+ See Also
101+ --------
102+ EllipticEnvelope : An object for detecting outliers in
103+ a Gaussian distributed dataset.
104+ EmpiricalCovariance : Maximum likelihood covariance estimator.
105+ GraphicalLasso : Sparse inverse covariance estimation
106+ with an l1-penalized estimator.
107+ GraphicalLassoCV : Sparse inverse covariance with cross-validated
108+ choice of the l1 penalty.
109+ LedoitWolf : LedoitWolf Estimator.
110+ MinCovDet : Minimum Covariance Determinant
111+ (robust estimator of covariance).
112+ OAS : Oracle Approximating Shrinkage Estimator.
113+
114+ Notes
115+ -----
116+ The regularized covariance is given by:
117+
118+ (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)
119+
120+ where mu = trace(cov) / n_features
121+
100122 Examples
101123 --------
102124 >>> import numpy as np
@@ -114,14 +136,6 @@ class ShrunkCovariance(EmpiricalCovariance):
114136 [0.2536..., 0.4110...]])
115137 >>> cov.location_
116138 array([0.0622..., 0.0193...])
117-
118- Notes
119- -----
120- The regularized covariance is given by:
121-
122- (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)
123-
124- where mu = trace(cov) / n_features
125139 """
126140
127141 def __init__ (self , * , store_precision = True , assume_centered = False , shrinkage = 0.1 ):
@@ -131,8 +145,7 @@ def __init__(self, *, store_precision=True, assume_centered=False, shrinkage=0.1
131145 self .shrinkage = shrinkage
132146
133147 def fit (self , X , y = None ):
134- """Fit the shrunk covariance model according to the given training data
135- and parameters.
148+ """Fit the shrunk covariance model to X.
136149
137150 Parameters
138151 ----------
@@ -146,6 +159,7 @@ def fit(self, X, y=None):
146159 Returns
147160 -------
148161 self : object
162+ Returns the instance itself.
149163 """
150164 X = self ._validate_data (X )
151165 # Not calling the parent object to fit, to avoid a potential
0 commit comments