@@ -338,7 +338,7 @@ def ledoit_wolf(X, *, assume_centered=False, block_size=1000):
338338
339339
340340class LedoitWolf (EmpiricalCovariance ):
341- """LedoitWolf Estimator
341+ """LedoitWolf Estimator.
342342
343343 Ledoit-Wolf is a particular form of shrinkage, where the shrinkage
344344 coefficient is computed using O. Ledoit and M. Wolf's formula as
@@ -385,22 +385,19 @@ class LedoitWolf(EmpiricalCovariance):
385385
386386 .. versionadded:: 0.24
387387
388- Examples
388+ See Also
389389 --------
390- >>> import numpy as np
391- >>> from sklearn.covariance import LedoitWolf
392- >>> real_cov = np.array([[.4, .2],
393- ... [.2, .8]])
394- >>> np.random.seed(0)
395- >>> X = np.random.multivariate_normal(mean=[0, 0],
396- ... cov=real_cov,
397- ... size=50)
398- >>> cov = LedoitWolf().fit(X)
399- >>> cov.covariance_
400- array([[0.4406..., 0.1616...],
401- [0.1616..., 0.8022...]])
402- >>> cov.location_
403- array([ 0.0595... , -0.0075...])
390+ EllipticEnvelope : An object for detecting outliers in
391+ a Gaussian distributed dataset.
392+ EmpiricalCovariance : Maximum likelihood covariance estimator.
393+ GraphicalLasso : Sparse inverse covariance estimation
394+ with an l1-penalized estimator.
395+ GraphicalLassoCV : Sparse inverse covariance with cross-validated
396+ choice of the l1 penalty.
397+ MinCovDet : Minimum Covariance Determinant
398+ (robust estimator of covariance).
399+ OAS : Oracle Approximating Shrinkage Estimator.
400+ ShrunkCovariance : Covariance estimator with shrinkage.
404401
405402 Notes
406403 -----
@@ -416,6 +413,23 @@ class LedoitWolf(EmpiricalCovariance):
416413 "A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices",
417414 Ledoit and Wolf, Journal of Multivariate Analysis, Volume 88, Issue 2,
418415 February 2004, pages 365-411.
416+
417+ Examples
418+ --------
419+ >>> import numpy as np
420+ >>> from sklearn.covariance import LedoitWolf
421+ >>> real_cov = np.array([[.4, .2],
422+ ... [.2, .8]])
423+ >>> np.random.seed(0)
424+ >>> X = np.random.multivariate_normal(mean=[0, 0],
425+ ... cov=real_cov,
426+ ... size=50)
427+ >>> cov = LedoitWolf().fit(X)
428+ >>> cov.covariance_
429+ array([[0.4406..., 0.1616...],
430+ [0.1616..., 0.8022...]])
431+ >>> cov.location_
432+ array([ 0.0595... , -0.0075...])
419433 """
420434
421435 def __init__ (self , * , store_precision = True , assume_centered = False , block_size = 1000 ):
@@ -425,8 +439,7 @@ def __init__(self, *, store_precision=True, assume_centered=False, block_size=10
425439 self .block_size = block_size
426440
427441 def fit (self , X , y = None ):
428- """Fit the Ledoit-Wolf shrunk covariance model according to the given
429- training data and parameters.
442+ """Fit the Ledoit-Wolf shrunk covariance model to X.
430443
431444 Parameters
432445 ----------
@@ -439,6 +452,7 @@ def fit(self, X, y=None):
439452 Returns
440453 -------
441454 self : object
455+ Returns the instance itself.
442456 """
443457 # Not calling the parent object to fit, to avoid computing the
444458 # covariance matrix (and potentially the precision)
0 commit comments