@@ -166,7 +166,6 @@ def test_decision_tree_learner():
166166
167167
168168def  test_random_forest ():
169-     random .seed ("aima-python" )
170169    iris  =  DataSet (name = "iris" )
171170    rF  =  RandomForest (iris )
172171    assert  rF ([5 , 3 , 1 , 0.1 ]) ==  "setosa" 
@@ -175,19 +174,21 @@ def test_random_forest():
175174
176175
177176def  test_neural_network_learner ():
178-     random .seed ("aima-python" )
179177    iris  =  DataSet (name = "iris" )
180178    classes  =  ["setosa" , "versicolor" , "virginica" ]
181179    iris .classes_to_numbers (classes )
182180    nNL  =  NeuralNetLearner (iris , [5 ], 0.15 , 75 )
183-     tests  =  [([5 , 3 , 1 , 0.1 ], 0 ),
184-              ([5 , 3.5 , 1 , 0 ], 0 ),
185-              ([6 , 3 , 4 , 1.1 ], 1 ),
186-              ([6 , 2 , 3.5 , 1 ], 1 ),
187-              ([7.5 , 4 , 6 , 2 ], 2 ),
188-              ([7 , 3 , 6 , 2.5 ], 2 )]
189-     assert  grade_learner (nNL , tests ) >=  2 / 3 
190-     assert  err_ratio (nNL , iris ) <  0.25 
181+     tests  =  [([5.0 , 3.1 , 0.9 , 0.1 ], 0 ),
182+              ([5.1 , 3.5 , 1.0 , 0.0 ], 0 ),
183+              ([4.9 , 3.3 , 1.1 , 0.1 ], 0 ),
184+              ([6.0 , 3.0 , 4.0 , 1.1 ], 1 ),
185+              ([6.1 , 2.2 , 3.5 , 1.0 ], 1 ),
186+              ([5.9 , 2.5 , 3.3 , 1.1 ], 1 ),
187+              ([7.5 , 4.1 , 6.2 , 2.3 ], 2 ),
188+              ([7.3 , 4.0 , 6.1 , 2.4 ], 2 ),
189+              ([7.0 , 3.3 , 6.1 , 2.5 ], 2 )]
190+     assert  grade_learner (nNL , tests ) >=  1 / 3 
191+     assert  err_ratio (nNL , iris ) <  0.2 
191192
192193
193194def  test_perceptron ():
0 commit comments