|
| 1 | +/* |
| 2 | + * File: time_complexity.swift |
| 3 | + * Created Time: 2022-12-26 |
| 4 | + * Author: nuomi1 ( [email protected]) |
| 5 | + */ |
| 6 | + |
| 7 | +// 常数阶 |
| 8 | +func constant(n: Int) -> Int { |
| 9 | + var count = 0 |
| 10 | + let size = 100_000 |
| 11 | + for _ in 0 ..< size { |
| 12 | + count += 1 |
| 13 | + } |
| 14 | + return count |
| 15 | +} |
| 16 | + |
| 17 | +// 线性阶 |
| 18 | +func linear(n: Int) -> Int { |
| 19 | + var count = 0 |
| 20 | + for _ in 0 ..< n { |
| 21 | + count += 1 |
| 22 | + } |
| 23 | + return count |
| 24 | +} |
| 25 | + |
| 26 | +// 线性阶(遍历数组) |
| 27 | +func arrayTraversal(nums: [Int]) -> Int { |
| 28 | + var count = 0 |
| 29 | + // 循环次数与数组长度成正比 |
| 30 | + for _ in nums { |
| 31 | + count += 1 |
| 32 | + } |
| 33 | + return count |
| 34 | +} |
| 35 | + |
| 36 | +// 平方阶 |
| 37 | +func quadratic(n: Int) -> Int { |
| 38 | + var count = 0 |
| 39 | + // 循环次数与数组长度成平方关系 |
| 40 | + for _ in 0 ..< n { |
| 41 | + for _ in 0 ..< n { |
| 42 | + count += 1 |
| 43 | + } |
| 44 | + } |
| 45 | + return count |
| 46 | +} |
| 47 | + |
| 48 | +// 平方阶(冒泡排序) |
| 49 | +func bubbleSort(nums: inout [Int]) -> Int { |
| 50 | + var count = 0 // 计数器 |
| 51 | + // 外循环:待排序元素数量为 n-1, n-2, ..., 1 |
| 52 | + for i in sequence(first: nums.count - 1, next: { $0 > 0 ? $0 - 1 : nil }) { |
| 53 | + // 内循环:冒泡操作 |
| 54 | + for j in 0 ..< i { |
| 55 | + if nums[j] > nums[j + 1] { |
| 56 | + // 交换 nums[j] 与 nums[j + 1] |
| 57 | + let tmp = nums[j] |
| 58 | + nums[j] = nums[j + 1] |
| 59 | + nums[j + 1] = tmp |
| 60 | + count += 3 // 元素交换包含 3 个单元操作 |
| 61 | + } |
| 62 | + } |
| 63 | + } |
| 64 | + return count |
| 65 | +} |
| 66 | + |
| 67 | +// 指数阶(循环实现) |
| 68 | +func exponential(n: Int) -> Int { |
| 69 | + var count = 0 |
| 70 | + var base = 1 |
| 71 | + // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) |
| 72 | + for _ in 0 ..< n { |
| 73 | + for _ in 0 ..< base { |
| 74 | + count += 1 |
| 75 | + } |
| 76 | + base *= 2 |
| 77 | + } |
| 78 | + // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 |
| 79 | + return count |
| 80 | +} |
| 81 | + |
| 82 | +// 指数阶(递归实现) |
| 83 | +func expRecur(n: Int) -> Int { |
| 84 | + if n == 1 { |
| 85 | + return 1 |
| 86 | + } |
| 87 | + return expRecur(n: n - 1) + expRecur(n: n - 1) + 1 |
| 88 | +} |
| 89 | + |
| 90 | +// 对数阶(循环实现) |
| 91 | +func logarithmic(n: Int) -> Int { |
| 92 | + var count = 0 |
| 93 | + var n = n |
| 94 | + while n > 1 { |
| 95 | + n = n / 2 |
| 96 | + count += 1 |
| 97 | + } |
| 98 | + return count |
| 99 | +} |
| 100 | + |
| 101 | +// 对数阶(递归实现) |
| 102 | +func logRecur(n: Int) -> Int { |
| 103 | + if n <= 1 { |
| 104 | + return 0 |
| 105 | + } |
| 106 | + return logRecur(n: n / 2) + 1 |
| 107 | +} |
| 108 | + |
| 109 | +// 线性对数阶 |
| 110 | +func linearLogRecur(n: Double) -> Int { |
| 111 | + if n <= 1 { |
| 112 | + return 1 |
| 113 | + } |
| 114 | + var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2) |
| 115 | + for _ in 0 ..< Int(n) { |
| 116 | + count += 1 |
| 117 | + } |
| 118 | + return count |
| 119 | +} |
| 120 | + |
| 121 | +// 阶乘阶(递归实现) |
| 122 | +func factorialRecur(n: Int) -> Int { |
| 123 | + if n == 0 { |
| 124 | + return 1 |
| 125 | + } |
| 126 | + var count = 0 |
| 127 | + // 从 1 个分裂出 n 个 |
| 128 | + for _ in 0 ..< n { |
| 129 | + count += factorialRecur(n: n - 1) |
| 130 | + } |
| 131 | + return count |
| 132 | +} |
| 133 | + |
| 134 | +func main() { |
| 135 | + // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势 |
| 136 | + let n = 8 |
| 137 | + print("输入数据大小 n =", n) |
| 138 | + |
| 139 | + var count = constant(n: n) |
| 140 | + print("常数阶的计算操作数量 =", count) |
| 141 | + |
| 142 | + count = linear(n: n) |
| 143 | + print("线性阶的计算操作数量 =", count) |
| 144 | + count = arrayTraversal(nums: Array(repeating: 0, count: n)) |
| 145 | + print("线性阶(遍历数组)的计算操作数量 =", count) |
| 146 | + |
| 147 | + count = quadratic(n: n) |
| 148 | + print("平方阶的计算操作数量 =", count) |
| 149 | + var nums = Array(sequence(first: n, next: { $0 > 0 ? $0 - 1 : nil })) // [n,n-1,...,2,1] |
| 150 | + count = bubbleSort(nums: &nums) |
| 151 | + print("平方阶(冒泡排序)的计算操作数量 =", count) |
| 152 | + |
| 153 | + count = exponential(n: n) |
| 154 | + print("指数阶(循环实现)的计算操作数量 =", count) |
| 155 | + count = expRecur(n: n) |
| 156 | + print("指数阶(递归实现)的计算操作数量 =", count) |
| 157 | + |
| 158 | + count = logarithmic(n: n) |
| 159 | + print("对数阶(循环实现)的计算操作数量 =", count) |
| 160 | + count = logRecur(n: n) |
| 161 | + print("对数阶(递归实现)的计算操作数量 =", count) |
| 162 | + |
| 163 | + count = linearLogRecur(n: Double(n)) |
| 164 | + print("线性对数阶(递归实现)的计算操作数量 =", count) |
| 165 | + |
| 166 | + count = factorialRecur(n: n) |
| 167 | + print("阶乘阶(递归实现)的计算操作数量 =", count) |
| 168 | +} |
| 169 | + |
| 170 | +main() |
0 commit comments